Строение и работа зрительного анализатора человека. Строение и функции зрительного анализатора

Глаза - орган зрения - можно сравнить с окном в окружающий мир. Примерно 70% всей информации мы получаем с помощью зрения, например о форме, размерах, цвете предметов, расстоянии до них и др. Зрительный анализатор контролирует двигательную и трудовую деятельность человека; благодаря зрению мы можем по книгам и экранам компьютеров изучать опыт, накопленный человечеством.

Орган зрения состоит из глазного яблока и вспомогательного аппарата. Вспомогательный аппарат - это брови, веки и ресницы, слезная железа, слезные канальцы, глазодвигательные мышцы, нервы и кровеносные сосуды

Брови и ресницы защищают глаза от пыли. Кроме того, брови отводят стекающий со лба пот. Все знают, что человек постоянно моргает (2-5 движений веками в 1 мин). Но знают ли зачем? Оказывается, поверхность глаза в момент моргания смачивается слезной жидкостью, предохраняющей ее от высыхания, заодно при этом очищаясь от пыли. Слезную жидкость вырабатывает слезная железа. Она содержит 99% воды и 1 % соли. В сутки выделяется до I г слезной жидкости, она собирается во внутреннем углу глаза, а затем попадает в слезные канальцы, которые выводят ее в носовую полость. Если человек плачет, слезная жидкость не успевает уйти по канальцам в носовую полость. Тогда слезы перетекают через нижнее веко и каплями стекают по лицу.

Глазное яблоко располагается в углублении черепа - глазнице. Оно имеет шаровидную форму и состоит из внутреннего ядра, покрытого тремя оболочками: наружной - фиброзной, средней - сосудистой и внутренней - сетчатой. Фиброзная оболочка подразделяется на заднюю непрозрачную часть - белочную оболочку, или склеру, и переднюю прозрачную - роговицу. Роговица представляет собой выпукло-вогнутую линзу, через которую свет проникает внутрь глаза. Сосудистая оболочка расположена под склерой. Ее передняя часть называется радужкой, в ней содержится пигмент, определяющий цвет глаз. В центре радужной оболочки находится небольшое отверстие - зрачок, который рефлекторно с помощью гладких мышц может расширяться или сужаться, пропуская в глаз необходимое количество света.

Собственно сосудистая оболочка пронизана густой сетью кровеносных сосудов, питающих глазное яблоко. Изнутри к сосудистой оболочке прилежит слой пигментных клеток, поглощающих свет, поэтому внутри глазного яблока свет не рассеивается, не отражается.

Непосредственно за зрачком находится двояковыпуклый прозрачный хрусталик. Он может рефлекторно менять свою кривизну, обеспечивая четкое изображение на сетчатке - внутренней оболочке глаза. В сетчатке располагаются рецепторы: палочки (рецепторы сумеречного света, которые отличают светлое от темного) и колбочки (они обладают меньшей светочувствительностью, но различают цвета). Большинство колбочек размещается на сетчатке напротив зрачка, в желтом пятне. Рядом с этим пятном находится место выхода зрительного нерва, здесь нет рецепторов, поэтому его называют слепым пятном.

Внутри глаз заполнен прозрачным и бесцветным стекловидным телом.

Восприятие зрительных раздражений . Свет попадает в глазное яблоко через зрачок. Хрусталик и стекловидное тело служат для проведения и фокусирования световых лучей на сетчатку. Шесть глазодвигательных мышц обеспечивают такое положение глазного яблока, чтобы изображение предмета попадало бы точно на сетчатку, на ее желтое пятно.

В рецепторах сетчатки происходит преобразование света в нервные импульсы, которые по зрительному нерву передаются в головной мозг через ядра среднего мозга (верхние бугры четверохолмия) и промежуточного мозга (зрительные ядра таламуса) - в зрительную зону коры больших полушарий, расположенную в затылочной области. Начавшееся в сетчатке восприятие цвета, формы, освещенности предмета, его деталей, заканчивается анализом в зрительной зоне коры. Здесь собирается вся информация, она расшифровывается и обобщается. В результате этого складывается представление о предмете.

Нарушения зрения. Зрение людей меняется с возрастом, так как хрусталик теряет эластичность, способность менять свою кривизну. В этом случае изображение близко расположенных предметов расплывается - развивается дальнозоркость. Другой дефект зрения - близорукость, когда люди, наоборот, плохо видят удаленные предметы; она развивается после длительного напряжения, неправильного освещения. Близорукость часто возникает у детей школьного возраста из-за неправильного режима труда, плохой освещенности рабочего места. При близорукости изображение предмета фокусируется перед сетчаткой, а при дальнозоркости - позади сетчатки и поэтому воспринимается как расплывчатое. Причиной этих дефектов зрения могут быть и врожденные изменения глазного яблока.

Близорукость и дальнозоркость исправляются специально подобранными очками или линзами.

  • Зрительный анализатор человека обладает потрясающей чувствительностью. Так, мы можем различить освещенное изнутри отверстие в стене диаметром всего 0,003 мм. Тренированный человек (причем у женщин это получается гораздо лучше) может различать сотни тысяч цветовых оттенков. Зрительному анализатору достаточно всего 0,05 секунды для распознавания объекта, который попал в поле зрения.

Проверьте свои знания

  1. Что такое анализатор?
  2. Как устроен анализатор?
  3. Назовите функции вспомогательного аппарата глаза.
  4. Как устроено глазное яблоко?
  5. Какие функции выполняют зрачок и хрусталик?
  6. Где располагаются палочки и колбочки, в чем заключаются их функции?
  7. Как работает зрительный анализатор?
  8. Что такое слепое пятно?
  9. Как возникают близорукость и дальнозоркость?
  10. Каковы причины нарушения зрения?

Подумайте

Почему говорят, что глаз смотрит, а мозг видит?

Орган зрения образован глазным яблоком и вспомогательным аппаратом. Глазное яблоко может двигаться благодаря шести глазодвигательным мышцам. Зрачок- небольшое отверстие, через которое в глаз попадает свет. Роговица и хрусталик являются преломляющим аппаратом глаза. Рецепторы (светочувствительные клетки - палочки, колбочки) находятся в сетчатке.

Зрительный анализатор. Представлен воспринимающим отделом - рецепторами сетчатой оболочки глаза, зрительными нервами, проводящей системой и соответствующими участками коры в затылочных долях мозга.

Глазное яблоко (см.рис.) имеет шаровидную форму, заключено в глазницу. Вспомогательный аппарат глаза представлен глазными мышцами, жировой клетчаткой, веками, ресницами, бровями, слезными железами. Подвижность глаза обеспечивают поперечно-полосатые мышцы, которые одним концом прикрепляются к костям глазничной впадины, другим - к наружной поверхности глазного яблока - белочной оболочке. Спереди глаз окружают две складки кожи - веки. Внутренние их поверхности покрыты слизистой оболочкой - конъюнктивой. Слезный аппарат состоит из слезных желез и отводящих путей. Слеза предохраняет роговицу от переохлаждения, высыхания и смывает осевшие пылевые частицы.

Глазное яблоко имеет три оболочки: наружную - фиброзную, среднюю - сосудистую, внутреннюю - сетчатую. Фиброзная оболочка непрозрачна и называется белочной или склерой. В передней части глазного яблока она переходит в выпуклую прозрачную роговицу. Средняя оболочка снабжена кровеносными сосудами и пигментными клетками. В передней части глаза она утолщается, образуя ресничное тело, в толще которого находится ресничная мышца, изменяющая своим сокращением кривизну хрусталика. Ресничное тело переходит в радужную оболочку, состоящую из нескольких слоев. В более глубоком слое залегают пигментные клетки. От количества пигмента зависит цвет глаз. В центре радужной оболочки есть отверстие - зрачок, вокруг которого расположены круговые мышцы. При их сокращении зрачок суживается. Радиальные мышцы, имеющиеся в радужной оболочке, расширяют зрачок. Самая внутренняя оболочка глаза - сетчатка, содержащая палочки и колбочки - светочувствительные рецепторы, представляющие периферический отдел зрительного анализатора. В глазу у человека насчитывается около 130 млн. палочек и 7 млн. колбочек. В центре сетчатки сосредоточено больше колбочек, а вокруг них и на периферии расположены палочки. От светочувствительных элементов глаза (палочек и колбочек) отходят нервные волокна, которые, соединяясь через промежуточные нейроны, образуют зрительный нерв. В месте выхода его из глаза отсутствуют рецепторы, этот участок не чувствителен к свету и называется слепым пятном. Снаружи от слепого пятна на сетчатке сосредоточены только колбочки. Этот участок называется желтым пятном, в нем наибольшее количество колбочек. Задний отдел сетчатки представляет собой дно глазного яблока.

За радужной оболочкой находится прозрачное тело, имеющее форму двояковыпуклой линзы - хрусталик, способный преломлять световые лучи. Хрусталик заключен в капсулу, от которой отходят цинновы связки, прикрепляющиеся к ресничной мышце. При сокращении мышцы связки расслабляются и кривизна хрусталика увеличивается, он становится более выпуклым. Полость глаза за хрусталиком заполнена вязким веществом - стекловидным телом.

Возникновение зрительных ощущений. Световые раздражения воспринимаются палочками и колбочками сетчатки. Прежде чем достигнуть сетчатки, лучи света проходят через светопреломляющие среды глаза. При этом на сетчатке получается действительное обратное уменьшенное изображение. Несмотря на перевернутость изображения предметов на сетчатке, вследствие переработки информации в коре головного мозга человек воспринимает их в естественном положении, к тому же зрительные ощущения всегда дополняются и согласуются с показаниями других анализаторов.

Способность хрусталика изменять свою кривизну в зависимости от удаленности предмета называется аккомодацией. Она увеличивается при рассматривании предметов на близком расстоянии и уменьшается при удалении предмета.

К нарушениям функции глаза относятся дальнозоркость и близорукость. С возрастом эластичность хрусталика уменьшается, он становится более уплощенным и аккомодация ослабевает. В это время человек хорошо видит только далекие предметы: развивается так называемая старческая дальнозоркость. Врожденная дальнозоркость связана с уменьшенной величиной глазного яблока или слабой преломляющей силой роговицы или хрусталика. При этом изображение от далеких предметов фокусируется позади сетчатки. При ношении очков с выпуклыми стеклами изображение передвигается на сетчатку. В отличие от старческой при врожденной дальнозоркости аккомодация хрусталика может быть нормальная.

При близорукости глазное яблоко увеличено в размере, изображение далеких предметов даже при отсутствии аккомодации хрусталика получается перед сетчаткой. Такой глаз ясно видит только близкие предметы и поэтому называется близоруким.Очки с вогнутыми стеклами, отодвигая изображение на сетчатку, исправляют близорукость.

Рецепторы сетчатки - палочки и колбочки - отличаются как по строению, так и по функции. С колбочками связано дневное зрение, они возбуждаются при ярком свете, а с палочками - сумеречное зрение, так как они возбуждаются при пониженном освещении. В палочках имеется вещество красного цвета - зрительный пурпур, или родопсин; на свету, в результате фотохимической реакции, он распадается, а в темноте восстанавливается в течение 30 мин из продуктов собственного расщепления. Вот почему человек, войдя в темную комнату, вначале ничего не видит, а через некоторое время начинает постепенно различать предметы (ко времени окончания синтеза родопсина). В образовании родопсина участвует витамин А, при его недостатке этот процесс нарушается и развивается "куриная слепота". Способность глаза рассматривать предметы при различной яркости освещения называется адаптацией. Она нарушается при недостатке витамина А и кислорода, а также при утомлении.

В колбочках содержится другое светочувствительное вещество - иодопсин. Он распадается в темноте и восстанавливается на свету в течение 3-5 мин. Расщепление иодопсина на свету дает цветовое ощущение. Из двух рецепторов сетчатки к цвету чувствительны только колбочки, которых в сетчатке три вида: одни воспринимают красный цвет, другие - зеленый, третьи - синий. В зависимости от степени возбуждения колбочек и сочетания раздражений воспринимаются различные другие цвета и их оттенки.

Глаз следует оберегать от разных механических воздействий, читать в хорошо освещенном помещении, держа книгу на определенном расстоянии (до 33-35 см от глаза). Свет должен падать слева. Нельзя близко наклоняться к книге, так как хрусталик в этом положении долго находится в выпуклом состоянии, что может привести к развитию близорукости. Слишком яркое освещение вредит зрению, разрушает световоспринимающие клетки. Поэтому сталеварам, сварщикам и лицам других сходных профессий рекомендуется надевать во время работы темные защитные очки. Нельзя читать в движущемся транспорте. Из-за неустойчивости положения книги все время меняется фокусное расстояние. Это ведет к изменению кривизны хрусталика, уменьшению его эластичности, в результате чего ослабевает ресничная мышца. Расстройство зрения может возникнуть также из-за недостатка витамина А.

Кратко:

Основную часть глаза составляет глазное яблоко. Оно состоит из хрусталика, стекловидного тела и водянистой влаги. Хрусталик имеет вид двояковыгнутой линзы. Он имеет свойство изменять свою кривизну в зависимости от дальности предмета. Его кривизна изменяется при помощи реснитчатой мыщцы. Функция стекловидного тела - поддержание формы глаза. Также имеется водянистая влага двух видов: передняя и задняя. Передняя находится между роговицей и радужкой, а задняя между радужкой и хрусталиком. Функция слезного аппарата - смачивание глаза. Близорукость - это патология зрения при котором изображение образуется перед сетчаткой. Дальнозоркость - патология при которой изображение формируется за сетчаткой. Изображение формируется перевернутое, уменьшенное.

Общее строение зрительного анализатора

Зрительный анализатор состоит из периферической части , представленной глазным яблоком и вспомог. отделом глаза (веки, слезн. аппарат, мышцы) –для восприятия света и трансформации его из свет импульса в электр. импульс; проводящих путей , включающих зрительный нерв, зрительный тракт, лучистость Грациоле(для объединения 2-х изображений в одно и проведение импульса в корковую зону), и центрального отдела анализатора. Центральный отдел состоит из подкоркового центра (наружные коленчатые тела) и коркового зрительного центра затылочной доли головного мозга (для анализа изображения на основе уже имеющихся данных).

Форма глазного яблока приближается к шаровидной, что оптимально для работы глаза как оптического прибора, и обеспечивает высокую подвижность глазного яблока. Такая форма наиболее устойчива к механическим воздействиям и поддерживается довольно высоким внутриглазным давлением и прочностью наружной оболочки глаза.анатомически различают два полюса – передний и задний. Прямая линия, соединяющая оба полюса глазного яблока, называется анатомической или оптической осью глаза. Плоскость, перпендикулярная анатомической оси и отстоящая на равном расстоянии от полюсов- экватор. Линии, проведенные через полюса по окружности глаза, называются меридианами.

Глазное яблоко имеет 3 оболочки, окружающие его внутренние среды, – фиброзную, сосудистую и сетчатую.

Строение наружной оболочки. Функции

Наружная оболочка, или фиброзная, представлена двумя отделами: роговицей и склерой.

Роговица , является передним отделом фиброзной оболочки, занимая 1/6 ее протяженности. Основные свойства роговицы: прозрачность, зеркальность, бессосудистость, высокая чувствительность, сферичность. Горизонтальный диаметр роговицы составляет »11 мм, вертикальный – на 1 мм короче. Толщина в центральной части 0,4-0,6 мм, на периферии 0,8-1 мм. В роговице выделяются пять слоев:

Передний эпителий;

Передняя пограничная пластинка, или боуменова мембрана;

Строма, или собственное вещество роговицы;

Задняя пограничная пластинка, или десцеметова мембрана;

Задний эпителий роговицы.

Рис. 7. Схема строения глазного яблока

Фиброзная оболочка: 1- роговица; 2 – лимб; 3-склера. Сосудистая оболочка:

4 – радужка; 5 – просвет зрачка; 6 – цилиарное тело (6а – плоская часть цилиарного тела; 6б – цилиарная мышца); 7 – хориоидея. Внутренняя оболочка: 8 –сетчатка;

9 – зубчатая линия; 10 – область желтого пятна; 11 – диск зрительно нерва.

12 – орбитальная часть зрительного нерва; 13 – оболочки зрительного нерва. Содержимое глазного яблока: 14 – передняя камера; 15 – задняя камера;

16 – хрусталик; 17 – стекловидное тело. 18 – конъюнктива: 19 – наружная мышца

Роговица выполняет функции: защитную, оптическую (»43,0 дптр), формообразующая, поддержание ВГД.

Граница перехода роговицы в склеру называется лимбом . Это полупрозрачная зона шириной »1мм.

Склера занимает оставшиеся 5/6 протяженности фиброзной оболочки. Ее характеризуют непрозрачность и эластичность. Толщина склеры в области заднего полюса до 1,0 мм, вблизи роговицы 0,6-0,8 мм. Самое тонкое место склеры расположено в области прохождения зрительного нерва – решетчатая пластинка. К функциям склеры относятся: защитная (от воздействия повреждающих факторов, боковых засветов сетчатки), каркасная (остов глазного яблока). Склера также служит местом прикрепления глазодвигательных мышц.

Сосудистый тракт глаза, его особенности. Функции

Средняя оболочка носит название сосудистого, или увеального тракта. Она подразделяется на три отдела: радужку, цилиарное тело и хориоидею.

Радужка (iris) представляет передний отдел сосудистой оболочки. Она имеет вид округлой пластинки, в центре которой находится отверстие - зрачок. Ее горизонтальный размер 12,5 мм, вертикальный 12 мм. Цвет радужки зависит от пигментного слоя. Радужка имеет две мышцы: сфинктер - суживающий зрачок, и дилятатор - расширяющий зрачок.

Функции радужки: экранирует световые лучи, является диафрагмой для лучей и участвует в регуляции ВГД.

Цилиарное , или ресничное тело (corpus ciliare) , имеет вид замкнутого кольца шириной около 5-6 мм. На внутренней поверхности передней части цилиарного тела имеются отростки, вырабатывающие внутриглазную жидкость, задняя часть - плоская. Мышечный слой представлен цилиарной мышцей.

От цилиарного тела тянется циннова связка, или ресничный поясок, поддерживающая хрусталик. Вместе они составляют аккомодационный аппарат глаза. Граница цилиарного тела с хориоидеей проходит на уровне зубчатой линии, что соответствует на склере местам прикрепления прямых мышц глаза.

Функции цилиарного тела: участие в аккомодации (мышечная часть с ресничным пояском и хрусталиком) и продукция внутриглазной жидкости (ресничные отростки). Хориоидея , или собственно сосудистая оболочка, составляет заднюю часть сосудистого тракта. Хориоидея состоит из слоев крупных, средних и мелких сосудов. Она лишена чувствительных нервных окончаний, поэтому развивающиеся в ней патологические процессы не вызывают болевых ощущений.

Ее функция - трофическая (или питательная), т.е. она является энергетической базой, обеспечивающей восстановление непрерывно распадающегося зрительного пигмента, необходимого для зрения.

Строение хрусталика.Ф-и

Хрусталик (lens) представляет собой прозрачную двояковыпуклую линзу с преломляющей силой 18,0 дптр. Диаметр хрусталика 9-10 мм, толщина 3,5 мм. Он изолирован от остальных оболочек глаза капсулой и не содержит нервов и сосудов. Состоит из хрусталиковых волокон, составляющих вещество хрусталика, и сумки- капсулы и капсулярного эпителия. Образование волокон происходит в течение всей жизни, что приводит к увеличению объема хрусталика. Но чрезмерного увеличения не происходит, т.к. старые волокна теряют воду, уплотняются, и в центре образуется компактное ядро. Поэтому в хрусталике принято выделять ядро (состоящее из старых волокон) и кору. Функции хрусталика: преломляющая и аккомодационная.

Дренажная система

Дренажная система – это основной путь оттока внутриглазной жидкости.

Внутриглазная жидкость вырабатывается отростками цилиарного тела.

Гидродинамика глаза- Переход внутриглазной жидкости из задней камеры, куда она сначала поступает, в переднюю, в норме не встречает сопротивления. Особую важность представляет отток влаги через

дренажную систему глаза, расположенную в углу передней камеры (место, где роговица переходит в склеру, а радужка – в ресничное тело) и состоящую из трабекулярного аппарата, шлеммова канала, коллектор-

ных каналов, системы интра– и эписклеральных венозных сосудов.

Трабекула имеет сложное строение и состоит из увеальной трабекулы, корнеосклеральной трабекулы и юкстаканаликулярного слоя.

Самый наружный, юкстаканаликулярный слой значительно отличается от других. Он представляет собой тонкую диафрагму из эпителиальных клеток и рыхлой системы коллагеновых волокон, пропитанных мукопо-

лисахаридами. Та часть сопротивления оттоку внутриглазной жидкости, которая приходится на трабекулу, находится именно в этом слое.

Шлеммов канал представляет собой циркулярную щель, расположенную в зоне лимба.

Функция трабекулы и шлеммова канала состоит в поддержании постоянства внутриглазного давления. Нарушение оттока внутриглазной жидкости через трабекулу является одной из основных причин первичной

глаукомы.

Зрительный путь

Топографически зрительный нерв можно подразделить на 4 отдела: внутриглазной, внутриорбитальный, внутрикостный (внутриканальцевый) и внутричерепной (внутримозговой).

Внутриглазная часть представлена диском диаметром 0,8 мм новорожденных и 2 мм у взрослых. Цвет диска желтовато-розовый (у маленьких детей сероватый), его контуры четкие, в центре имеется воронкообразное углубление белесоватого цвета (экскавация). В области экскавации входит центральная артерия сетчатки и выходит центральная вена сетчатки.

Внутриорбитальная часть зрительного нерва, или его начальный мякотный отдел, начинается сразу после выхода из решетчато пластинки. Он сразу приобретает соединительнотканную (мягкую оболочку, нежное паутинное влагалище и наружную (твердую) оболочку. Зрительный нерв (n. opticus), покрытый обо-

лочками. Внутриорбитальная часть имеет длину 3 см и S-образный изгиб. Такие

размеры и форма способствуют хорошей подвижности глаза без натяжения волокон зрительного нерва.

Внутрикостная (внутриканальцевая) часть зрительного нерва начинается от зрительного отверстия клиновидной кости (между телом и корнями ее малого

крыла), проходит по каналу и заканчивается у внутричерепного отверстия канала. Длина этого отрезка около 1 см. Он теряет в костном канале твердую оболочку

и покрыт только мягкой и паутинной оболочками.

Внутричерепной отдел имеет длину до 1,5 см. В области диафрагмы турецкого седла зрительные нервы сливаются, образуя перекрест – так называемую

хиазму. Волокна зрительного нерва от наружных (височных) отделов сетчатки обоих глаз не перекрещиваются и идут по наружным участкам хиазмы кзади, а во-

локна от внутренних (носовых) отделов сетчатки полностью перекрещиваются.

После частичного перекреста зрительных нервов в области хиазмы образуются правый и левый зрительные тракты. Оба зрительных тракта, дивергируя, на-

правляются к подкорковым зрительным центрам – латеральным коленчатым телам. В подкорковых центрах замыкается третий нейрон, начинающийся в мультиполярных клетках сетчатки, и заканчивается так называемая периферическая часть зрительного пути.

Таким образом, зрительный путь соединяет сетчатку с головным мозгом и образован из аксонов ганглиозных клеток, которые, не прерываясь, доходят до наружного коленчатого тела, задней части зрительного бугра и переднего четверохолмия, а также из центробежных волокон, являющихся элементами обратной связи. Подкорковым центром служат наружные коленчатые тела. В нижнетемпоральной части диска зрительного нерва сосредоточены волокна папилломакулярного пучка.

Центральная часть зрительного анализатора начинается от крупных длинноаксонных клеток подкорковых зрительных центров. Эти центры соединяются зрительной лучистостью с корой шпорной борозды на

медиальной поверхности затылочной доли мозга, проходя при этом заднюю ножку внутренней капсулы, что соответствует в основном полю 17 по Бродману коры

головного мозга. Эта зона является центральной частью ядра зрительного анализатора. При повреждении полей 18 и 19 нарушается пространственная ориентация или возникает «душевная» (психическая) слепота.

Кровоснабжение зрительного нерва до хиазмы осуществляется ветвями внутренней сонной артерии. Кровоснабжение внутриглазной части зрительно-

го нерва осуществляется из 4 артериальных систем: ретинальной, хориоидальной, склеральной и менингеальной. Основными источниками кровоснабжения являются ветви глазничной артерии (центральная ар-

терия сетчатки, задние короткие ресничные артерии),веточки сплетения мягкой мозговой оболочки. Преламинарный и ламинарный отделы диска зри-

тельного нерва получают питание из системы задних цилиарных артерий.

Хотя эти артерии не относятся к сосудам концевого типа, анастомозы между ними недостаточны и кровоснабжение хориоидеи и диска сегментарное. Следовательно, при окклюзии одной из артерий нарушается питание соответствующего сегмента хориоидеи и диска зрительного нерва.

Таким образом, выключение одной из задних ресничных артерий или ее малых ветвей вызовет выключение сектора решетчатой пластинки и преламинар-

ной части диска, что проявится своеобразным выпадением полей зрения. Такое явление наблюдается при передней ишемической оптикопатии.

Основными источниками кровоснабжения решетчатой пластинки являются задние короткие ресничные

артерии. Сосуды, питающие зрительный нерв, принадлежат к системе внутренней сонной артерии. Ветви наружной сонной артерии имеют многочисленные анастомозы с ветвями внутренней сонной артерии. Почти весь отток крови как из сосудов диска зрительного нерва, так и из ретроламинарной области осуществляется в систему центральной вены сетчатки.

Конъюнкктивиты

Воспалительные заболевания конъюнктивы.

Бактериальный к-т . Жалобы: светобоязнь, слезотечение чувство жжения и тяжести в глазах.

Клин. Проявления: выраженная конъюнктив. Инъекция (красный глаз), обильное слизисто-гнойное отделяемое, отек. Заболевание начинается на одном и переходит на другой глаз.

Осложнения: точечные серые роговичные инфильтраты, кот. расп. цепочкой вокруг лимба.

Лечение: частое промывание глаз дез. растворами, частое закапывание капель, мази при осложнениях. После стихания о. восп. Гормоны и НПВП.

Вирусный к-т. Жалобы: Возд-кап. путь передачи. О.начало, часто предшествуют катаральные проявления ВДП. Повыш. темп. тела, насморк, гол. Боль, увел л/узлов, светобоязнь, слезотечение, мало или нет отделяемого, гиперемия.

Осложнения: точечный эпителиальный кератит, исход благоприятный.

Лечение: Противовирус. препараты, мази.

Строение века. Функции

Веки (palpebrae) представляют собой подвижные наружные образования, защищающие глаз от внешних воздействий во время сна и бодрствования (рис. 2,3).

Рис. 2. Схема сагиттального разреза через веки и

передний отдел глазного яблока

1 и 5 - верхний и нижний конъюнктивальные своды; 2 – конъюнктива века;

3 – хрящ верхнего века с мейбомиевыми железами; 4 – кожа нижнего века;

6 – роговица; 7 – передняя камера глаза; 8 – радужка; 9 – хрусталик;

10 – циннова связка; 11 – цилиарное тело

Рис. 3. Сагиттальный разрез верхнего века

1,2,3,4 – пучки мышц века; 5,7 – добавочные слезные железы;

9 – задний край века; 10 – выводной проток мейбомиевой железы;

11 – ресницы; 12 - тарзоорбитальная фасция (за ней жировая клетчатка)

Снаружи они покрыты кожей. Подкожная клетчатка рыхлая и лишена жира, этим объясняется легкость появления отеков. Под кожей расположена круговая мышца век, благодаря которой происходит смыкание глазной щели и зажмуривание век.

Позади мышцы находится хрящ века (tarsus) , в толще которого имеются мейбомиевы железы, продуцирующие жировой секрет. Их выводные протоки выходят точечными отверстиями в интермаргинальное пространство - полоску ровной поверхности между передним и задним ребром век.

На переднем ребре в 2-3 ряда растут ресницы. Веки соединяются наружной и внутренней спайкой, образуяглазную щель. Внутренний угол притуплен подковообразным изгибом, ограничивающим слезное озеро, в котором находится слезное мясцо и полулунная складка. Длина глазной щели около 30 мм, ширина 8-15 мм. Задняя поверхность век покрыта слизистой оболочкой - конъюнктивой. Спереди она переходит в эпителий роговицы. Место перехода конъюнктивы века в конъюнктиву гл. яблока – свод.

Ф-и: 1. Защита от механических повреждений

2. увлажняющая

3. участвует в процессе образования слезы и формирования слезной пленки

Ячмень

Ячмень – острое гнойное воспаление волосяного мешочка. Характеризуется возникновением на ограниченном участке края века болезненного покраснения и припухлости. Через 2-3 дня в центре воспаления появляется гнойная точка, образуется гнойная пустула. На 3-4 день она вскрывается, и из нее выходит гнойное содержимое.

В самом начале заболевания болезненную точку надо смазать спиртом или 1% р-ром бриллиантового зеленого. При развитии заболевания – противобактериальные капли и мази, ФТЛ, сухое тепло.

Блефарит

Блефарит – воспаление краев век. Наиболее частое и упорное заболевание. Возникновению блефарита способствуют неблагоприятные санитарно-гигиенические условия, аллергическое состояние организма, некорригированные аномалии рефракции, внедрение в волосяной мешочек клеща демодекс, повышение секреции мейбомиевых желез, желудочно-кишечные заболевания.

Начинается блефарит с покраснение краев век, появления зуда и пенистого отделяемого в углах глаз, особенно вечером. Постепенно края век утолщаются, покрываются чешуйками и корочками. Зуд и ощущение засоренности глаз усиливаются. При отсутствии лечения у корня ресниц образуются кровоточащие язвочки, нарушается питание ресниц, и они выпадают.

Лечение блефарита включает в себя устранение факторов, способствующих его развитию, туалет век, массаж, закладываение противовоспалительных и витаминных мазей.

Иридоциклит

Иридоциклит начинается с ирита - воспаления радужки.

Клиническая картина иридоциклита проявляется прежде всего резкой болью в глазу и соответствующей половине головы, усиливающейся по ночам. По-

явление болей связано с раздражением цилиарных нервов. Раздражение цилиарных нервов рефлекторным путем вызывает появление фотофобии (блефароспазма и слезотечения). Возможно нарушение зрения, хотя в начале заболевания зрение может быть нормальным.

При развившемся иридоциклите изменяется цвет радужки-

в связи с повышением проницаемости расширенных сосудов радужки и попаданием в ткань эритроцитов, которые разрушаются. Этим, а также инфильтрацией радужки объясняются и два других симптома – стушеванность рисунка радужки и миоз - сужение зрачка.

При иридоциклите появляется перикорнеальная инъекция . Болевая реакция на свет усиливается в момент аккомодации и конвергенции. Для определения этого симптома больной должен посмотреть вдаль, а затем быстро на кончик своего носа; при этом возникает резкая боль. В неясных случаях этот фактор, помимо других признаков, способствует дифференциальной диагностике с конъюнктивитом.

Почти всегда при иридоциклитах определяются преципитаты, оседающие на задней поверхности роговицы в нижней половине в виде треугольника верши-

ной кверху. Они представляют собой комочки экссудата, содержащие лимфоциты, плазматические клетки, макрофаги.

Следующим важным симптомом иридоциклита является образование задних синехий – спаек радужной оболочки и передней капсулы хрусталика. Набух-

шая, малоподвижная радужка плотно соприкасается с передней поверхностью капсулы хрусталика, поэтому для сращения достаточно небольшого количества экссудата, особенно фибринозного.Глубина передней камеры становится неравномерной (камера глубокая в центре и мелкая по периферии), вследствие нарушения оттока внутриглазной жидкости возможно развитие вторичной глаукомы.

При измерении внутриглазного давления констатируют нормо– или гипотонию (при отсутствии вторичной глаукомы). Возможно реактивное повышение внутри-

глазного давления.

Последним постоянным симптомом иридоциклитов служит появление экссудата в стекловидном теле, вызывающего диффузные или хлопьевидные плавающие помутнения.

Хориоидит

Хориоидит характеризуется отсутствием болевого синдрома. Возникают жалобы, характерные для поражения заднего отдела глаза: вспышки и мерцания перед глазом (фотопсии), искажение рассматриваемых предметов (метаморфопсии), ухудшение сумеречного зрения (гемералопия).

Для диагностики необходим осмотр глазного дна. При офтальмоскопии видны очаги желтовато-серого цвета, различной формы и величины. Могут быть кровоизлияния.

Лечение включает общую терапию (направлена на основное заболевание), инъекции кортикостероидов, антибиотиков, ФТЛ.

Кератиты

Кератиты - воспаление роговицы. В зависимости от происхождения они подразделяются на травматические, бактериальные, вирусные, кератиты при инфекционных заболеваниях и авитаминозные. Наиболее тяжело протекают вирусные герпетические кератиты.

Несмотря на разнообразие клинических форм, у кератитов есть ряд общих симптомов. Среди жалоб отмечаются боли в глазу, светобоязнь, слезотечение, снижение остроты зрения. При осмотре выявляется блефароспазм, или сжатие век, перикорнеальная инъекция (наиболее выражена вокруг роговицы). Имеет место снижение чувствительности роговицы вплоть до ее полной потери – при герпетических. Для кератитов характерно появление на роговице помутнений, или инфильтратов, которые изъязвляются, образуя язвочки. На фоне лечения язвочки выполняются непрозрачной соединительной тканью. Поэтому после глубоких кератитов формируются стойкие помутнения различной интенсивности. И только поверхностные инфильтраты полностью рассасываются.

1. Бактериальный кератит.

Жалобы: боль, светобоязнь, слезотечение, красный глаз, инфильтраты в роговице с прораст. сосудов, гнойная язва с подрытым краем,гипопион (гной в передней камере).

Исход: прободение кнаружи или внутрь, помутнение роговицы, панофтальмит.

Лечение: Стационар быстро!, А/б, ГКК, НПВП, ДТК, кератопластика и.т.д.

2 вирусный кератит

Жалобы:сниж. чувств-сти роговицы, корнеальный с-м выражен незнач., в нач. стадии отделяемое скудное, рецидив. х-р течения, предшествующие герпет. Высыпания, редко васкуляризация инфильтратов.

Исход: выздоровление; облачко-тонкое полупрозрачное ограниченное помутнение сероватого цвета, невидимое невооруженным глазом; пятно –более плотное ограниченное помутнение беловатого цвета; бельмо –плотный толстый непрозрачный рубец роговицы белого цвета. Пятно и облачко можно удалить лазером. Бельмо –кератопластика, кератопротезирование.

Лечение: стац. или амб., п/вирусные, НПВП, а/б, мидриатики, крио-, лазе-, кератопластика и т.д.

Катаракта

Катаракта – любое помутнение хрусталика (частичное или полное), происходит в результате нарушения в нем обменных процессов при возрастных изменениях или заболеваниях.

По локализации различаются катаракты передне- и заднеполярные, веретенообразные, зонулярные, чашеобразные, ядерные, корковые и тотальные.

Класификация:

1. По происхождению-врожденная (ограниченная и не прогрессирует) и приобретенная (старческая, травматическая, осложненная, лучевая, токсическая, на фоне общих заболеваний)

2. По локализации –ядерная, капсулярная, тотальная)

3. По степени зрелости (начальная, незрелая, зрелая, перезрелая)

Причины: нарушение метаболизма, интоксикации, облучение, контузии, проникающие ранения, заболевания глаз.

Возрастная катаракта развивается в результате дистрофических процессов в хрусталике и по локализации может быть корковой (чаще всего), ядерной или смешанной.

При корковой катаракте первые признаки возникают в коре хрусталика у экватора, а центральная часть долго остается прозрачной. Это способствует сохранению относительно высокой остроты зрения длительное время. В клиническом течении различают четыре стадии: начальная, незрелая, зрелая и перезрелая.

При начальной катаракте больных беспокоят жалобы на снижение зрения, «летающих мушек», «туман» перед глазами. Острота зрения находится в пределах 0,1-1,0. При исследовании в проходящем свете катаракта просматривается в виде черных «спиц» от экватора к центру на фоне красного свечения зрачка. Глазное дно доступно офтальмоскопии. Эта стадия может длиться от 2-3 лет до нескольких десятилетий.

На стадии незрелой, или набухающей, катаракты у больного резко снижается острота зрения, так как процесс захватывает всю кору (0,09-0,005). В результате оводнения хрусталика увеличивается его объем, что приводит к миопизации глаза. При боковом освещении хрусталик имеет серо-белый цвет и отмечается «полулунная» тень. В проходящем свете – рефлекс глазного дна неравномерно тусклый. Набухание хрусталика приводит к уменьшению глубины передней камеры. Если угол передней камеры блокируется, то повышается ВГД, развивается приступ вторичной глаукомы. Глазное дно не офтальмоскопируется. Эта стадия может длиться неопределенно долго.

При зрелой катаракте предметное зрение полностью исчезает, определяется лишь светоощущение с правильной проекцией (VIS=1/¥Pr.certa.). Рефлекс глазного дна серый. При боковом освещении – весь хрусталик бело-серый.

Стадия перезрелой катаракты делится на несколько этапов: фаза молочной катаракты, фазы морганиевой катаракты и полное рассасывание, в результате которых от хрусталика остается только одна капсула. Четвертая стадия практически не встречается.

В процессе созревания катаракты могут возникнуть следующие осложнения:

Вторичная глаукома (факогенная) – обусловлена патологическим состоянием хрусталика в стадии незрелой и перезрелой катаракты;

Факотоксический иридоциклит – обусловлен токсико-аллергическим действием продуктов распада хрусталика.

Лечение катаракт подразделяется на консервативное и оперативное.

Консервативное назначается для предупреждения прогрессирования катаракты, что целесообразно на первой стадии. Оно включает витамины в каплях (комплекса В, С, Р и др.), комбинированные препараты (сенкаталин, катахром, квинакс, витайодурол и др.) и препараты, влияющие на обменные процессы в глазу (4% р-р тауфона).

Оперативное лечение заключается в удалении мутного хрусталика хирургическим путем (экстрация катаракты) и факоэмульсификация. Экстракция катаракты может проводиться двумя способами: интракапсулярным – извлечение хрусталика в капсуле и экстракапсулярным – удаление передней капсулы, ядра и хрусталиковых масс при сохранении задней капсулы.

Обычно оперативное лечение проводят на стадии незрелой, зрелой или перезрелой катаракты и при осложнениях. Начальную катаракту иногда оперируют по социальным показаниям (например, профнесоответствии).

Глаукома

Глаукома – это заболевание глаз, которое характеризуется:

Постоянным или периодическим повышением ВГД;

Развитием атрофии зрительного нерва (глаукоматозной экскавации ДЗН);

Возникновением типичных дефектов поля зрения.

При повышении ВГД страдает кровоснабжение оболочек глаза, особенно резко внутриглазной части зрительного нерва. В результате этого развивается атрофия его нервных волокон. Это в свою очередь приводит к возникновению типичных дефектов зрения: снижению остроты зрения, появлению парацентральных скотом, увеличению слепого пятна, сужению поля зрения (особенно с носовой стороны).

Различают три основных типа глаукомы:

Врожденную - вследствие аномалий развития дренажной системы,

Первичную, как результат изменения угла передней камеры (УПК),

Вторичную, как симптом глазных заболеваний.

Наиболее часто встречается первичная глаукома. В зависимости от состояния УПК она подразделяется на открытоугольную, закрытоугольную и смешанную.

Открытоугольная глаукома является следствием дистрофических изменений в дренажной системе глаза, что приводит к нарушению оттока внутриглазной жидкости через УПК. Она отличается незаметным хроническим течением на фоне умеренно повышенного ВГД. Поэтому часто выявляется случайно при осмотрах. При гониоскопии УПК открыт.

Закрытоугольная глаукома возникает в результате блокады УПК корнем радужки, обусловленной функциональным блоком зрачка. Это связано с плотным прилеганием хрусталика к радужке в результате анатомических особенностей глаза: крупный хрусталик, мелкая передняя камера, узкий зрачок у пожилых людей. Эта форма глаукомы характеризуется приступообразным течением и начинается с острого или подострого приступа.

Смешанная глаукома является сочетанием признаков, типичных для двух предыдущих форм.

В развитии глаукомы можно выделить четыре стадии: начальная, развитая, далеко зашедшая и терминальная. Стадия зависит от состояния зрительных функций и ДЗН.

Для начальной, или I стадии, характерно расширение экскавации ДЗН до 0,8, увеличение слепого пятна и парацентральных скотом, незначительное сужение поля зрения с носовой стороны.

При развитой, или II стадии, отмечается краевая экскавация ДЗН и стойкое сужение поля зрения с носовой стороны до 15 о от точки фиксации.

Далеко зашедшая, или III стадия, характеризуется стойким концентрическим сужением поля зрения менее 15 0 от точки фиксации или сохранением отдельных участков поля зрения.

При терминальной, или IV стадии, наступает утрата предметного зрения – наличие светоощущения с неправильной проекцией (VIS=1/¥ pr/incerta) или полная слепота (VIS=0).

Острый приступ глаукомы

Острый приступ возникает при закрытоугольной глаукоме в результате блокирования хрусталиком зрачка. При этом нарушается отток внутриглазной жидкости из задней камеры в переднюю, что приводит к повышению ВГД в задней камере. Следствием этого является выдавливание радужки кпереди («бомбаж») и закрытие корнем радужки УПК. Отток через дренажную систему глаза становится невозможным, и ВГД повышается.

Острые приступы глаукомы возникают обычно под влиянием стрессовых состояний, физических перенапряжений, при медикаментозном расширении зрачка.

Во время приступа больной жалуется на резкие боли в глазу, иррадиирующие в висок и соответствующую половину головы, затуманивание зрения и появление радужных кругов при взгляде на источник света.

При осмотре отмечается застойная инъекция сосудов глазного яблока, отек роговицы, мелкая передняя камера, широкий зрачок овальной формы. Подъем ВГД может быть до 50-60 мм.рт.ст и выше. При гониоскопии УПК закрыт.

Лечение необходимо проводить сразу же, как только установлен диагноз. Местно проводят инстилляции миотиков (1% р-р пилокарпина в течение первого часа – каждые 15 минут, II-III час - каждые 30 минут, IV-V час – 1 раз в час). Внутрь - мочегонные (диакарб, лазикс), анальгетики. К отвлекающей терапии относятся горячие ножные ванны. Во всех случаях необходима госпитализация для хирургического или лазерного лечения.

Лечение глаукомы

Консервативное лечение глаукомы складывается из гипотензивной терапии, то есть снижения ВГД (1% р-р пилокарпина, тимолола.) и медикаментозного лечения, направленного на улучшение кровообращения и обменных процессов в тканях глаза (сосудорасширяющие препараты, ангиопротекторы, витамины).

Хирургическое и лазерное лечение подразделяется на несколько методов.

Иридэктомия – иссечение участка радужки, в результате чего устраняются последствия зрачкового блока.

Операции на склеральном синусе и трабекуле: синусотомия – вскрытие наружной стенки шлеммова канала, трабекулотомия – разрез внутренней стенки шлеммова канала, синусотрабекулоэктомия – иссечение участка трабекулы и синуса.

Фистулизирующие операции – создание новых путей оттока из передней камеры глаза в подконъюнктивальное пространство.

Клиническая рефракция

Физическая рефракция – преломляющая сила любой оптической системы.Для получения четкого изображения важна не преломляющая сила глаза, а его способность фокусировать лучи точно на сетчатке. Клиническая рефракция – отношение главного фокуса к центр. ямке сетчатки.

В зависимости от этого соотношения рефракция подразделяется на:

Соразмерную – эмметропия ;

Несоразмерную – аметропия

Каждый вид клинической рефракции характеризуется положением дальнейшей точки ясного видения.

Дальнейшая точка ясного видения (Rp) – точка в пространстве, изображение которой фокусируется на сетчатке в покое аккомодации.

Эмметропия – вид клинической рефракции, при которой задний главный фокус параллельных лучей находится на сетчатке, т.е. преломляющая сила соразмерна длине глаза. Дальнейшая точка ясного видения расположена в бесконечности. Поэтому изображение предметов, находящихся вдали, четкое, и острота зрения высокаяАметропия – клиническая рефракция, при которой задний главный фокус параллельных лучей не совпадает с сетчаткой. В зависимости от его нахождения аметропия подразделяется на миопию и гиперметропию.

Классификация аметропии (по Трону):

Осевая – преломляющая сила глаза в пределах нормы, а длина оси больше или меньше, чем при эмметропии;

Рефракционная – длина оси в пределах нормы, преломляющая сила глаза больше или меньше, чем при эмметропии;

Смешанного происхождения – длина оси и преломляющая сила глаза не соответствует норме;

Комбинационная – длина оси и преломляющая сила глаза в норме, но их сочетание неудачное.

Миопия – вид клинической рефракции, при которой задний главный фокус находится перед сетчаткой, следовательно, преломляющая сила слишком велика и не соответствует длине глаза. Поэтому, чтобы лучи собирались на сетчатке, они должны иметь расходящееся направление, то есть дальнейшая точка ясного видения расположена перед глазом на конечном расстоянии. Острота зрения у миопов снижена. Чем ближе к глазу лежит Rp, тем сильнее рефракция и выше степень миопии.

Степени миопии: слабая – до 3,0 дптр, средняя – 3,25-6,0 дптр, высокая – выше 6,0 дптр.

Гиперметропия – вид аметропии, при которой задний главный фокус находится за сетчаткой, то есть преломляющая сила слишком мала.

Для того, чтобы лучи собирались на сетчатке, они должны иметь сходящееся направление, то есть дальнейшая точка ясного видения расположена за глазом, что возможно только теоретически. Чем дальше за глазом расположена Rp, тем слабее рефракция и выше степень гиперметропии. Степени гиперметропии такие же как при миопии.

Миопия

К причинам развития миопии относятся: наследственность, удлинение ПЗО глаза, первичная слабость аккомодации, ослабление склеры, длительная работа на близком расстоянии, природно-географический фактор.

Схема патогенеза: -ослабление аккомодации

Спазм аккомодации

Ложная М

Развитие истинной М или прогрес-ие имеющейся М

Эмметропический глаз становится миопическим не потому, что он аккомодирует, а потому, что ему трудно длительно аккомодировать.

При ослабленной аккомодации глаз может удлиниться настолько, чтобы в условиях напряженной зрительной работы на близком расстоянии вообще избавить цилиарную мышцу от непосильной деятельности. С увеличением степени близорукости наблюдается еще большее ослабление аккомодации.

Слабость цилиарной мышцы обусловлена недостатком ее кровообращения. А увеличение ПЗО глаза сопровождается еще большим ухудшением местной гемодинамики, что приводит еще большему ослаблению аккомодации.

Процент миопов в районах Заполярья выше, чем в средней полосе. А среди школьников городских школ миопия встречается чаще, чем у сельских школьников.

Различают истинную миопию и ложную.

Истинная миопия

Классификация:

1. По возрастному периоду возникновения:

Врожденная,

Приобретенная.

2. По течению:

Стационарная,

Медленно прогрессирующая (менее 1,0 дптр в год),

Быстро прогрессирующая (более 1,0 дптр в год).

3. По наличию осложнений:

Неосложненная,

Осложненная.

Приобретенная миопия является вариантом клинической рефракции, которая с возрастом, как правило, увеличивается незначительно и не сопровождается заметными морфологическими изменениями. Она хорошо корригируется и не требует лечения. Неблагоприятный прогноз обычно отмечается только при миопии, приобретенной в дошкольном возрасте, так как играет роль склеральный фактор.

- один из самых важных анализаторов, т.к. дает более 90% сенсорной информации.

Зрительное восприятие начинается с проекции изображения на сетчатку глаза и возбуждения фоторецепторов, затем информация последовательно обрабатывается в подкорковых и корковых зрительных центрах, в результате чего возникает зрительный образ, который благодаря взаимодействию зрительного анализатора с другими анализаторами правильно отражает объективную реальность.

Зрительныйанализатор- совокупность структур, воспринимающих световое излучение (электромагнитные волны с длиной 390-670нм) и формирующих зрительные ощущения.

Он позволяет различать освещенность предметов, их цвет, форму, размеры, характеристики передвижения, пространственную ориентацию в окружающем мире.

Орган зрения состоит из глазного яблока, зрительного нерва и вспомогательных органов глаза. Глаз состоит из оптической и фоторецепторной частей и имеет три оболочки: белочную, сосудистую и сетчатую.

Оптическая система глаза обеспечивает светопреломляющую функцию и состоит из светопреломляющих (рефракционных) сред (преломление – с целью фокусировки лучей в одной точке на сетчатке): Прозрачной роговицы (сильная рефракционная способность);

жидкость передней и задней камер;

хрусталика, окруженного прозрачной сумкой , реализует аккомодацию- изменение рефракции;

стекловидного тела, занимающего большую часть глазного яблока (слабая рефракц. способность).

Глазное яблоко имеет шаровидную форму. В нем выделяют передний и задний полюс. Передний полюс - наиболее выступающая точка роговицы, задний полюс расположен латерально от места выхода зрительного нерва. Соединяющая оба полюса условная линия – наружная ось глаза, она равна 24мм и находится в плоскости меридиана глазного яблока. Глазное яблоко состоит из ядра (хрусталик, стекловидное тело), покрытого тремя оболочками: наружной(фиброзная или белочная), средней (сосудистой),внутренней(сетчатой).

Роговица – прозрачная выпуклая пластинка блюдцеобразной формы, лишена кровеносных сосудов. Различное количество и качества пигмента меланина на пигментном слое радужной оболочки обуславливает цвет глаза - карий, черный (при наличии большого количества меланина), голубой и зеленоватый, если его мало. У альбиносов нет пигмента вообще, у них радужная оболочка не окрашена, сквозь нее просвечивают кровеносные сосуды и поэтому радужка кажется красной.

Хрусталик – прозрачная двояковыпуклая линза (т.е. увеличительное стекло) диаметром около 9мм, имеющая переднюю и заднюю поверхности. Передняя поверхность более плоская. Линия, соединяющая наиболее выпуклые точки обеих поверхностей, называется осью хрусталика. Хрусталик как бы подвешен на ресничном пояске, т.е. на цинновой связке.

Кривизна хрусталика зависит от цилиарной мышцы, она напрягается. При чтении, при смотрении вдаль эта мышца расслабляется, хрусталик становится плоским. При смотрении вдаль – менее выпуклый хрусталик.

Т.о. при натяжении связки, т.е. расслаблении ресничной мышцы хрусталик уплощается(установка на дальнее видение), при расслаблении связки, т.е. при сокращении ресничной мышцы, выпуклость хрусталика увеличивается (установка на ближнее видение) Это и называется аккомодацией.

Хрусталик имеет форму двояковыпуклой линзы. Его функция заключается в преломлении проходящих через него лучей света и фокусировке изображения на сетчатке.

Стекловидное тело – прозрачный гель, состоящий из внеклеточной жидкости с коллагеном и гиалуроновой кислотой в коллоидном растворе. Заполняет пространство между сетчаткой сзади, хрусталиком и задней стороной ресничного пояска спереди. На передней поверхности стекловидного тела имеется ямка, в которой располагается хрусталик.

В задней части глаза его внутренняя поверхность выстлана сетчаткой. Промежуток между сетчаткой и плотной склерой, окружающее глазное яблоко, заполнен сетью кровеносных сосудов – сосудистой оболочкой. У заднего полюса глаза человека в сетчатке есть небольшое углубление - центральная ямка – место, где острота зрения при дневном освещении максимальна.

Сетчатка представляет собой внутреннюю (светочувствительная) оболочку глазного яблока, на всем протяжении прилежит изнутри к сосудистой оболочке.

Состоит из 2-х листков: внутреннего – светочувствительного, наружного пигментного. Сетчатка делится на две части: заднюю - зрительную и переднюю- (ресничную) которая не содержит фоторецепторов.

Место выхода зрительного нерва из сетчатки - называют диском зрительного нерва или слепым пятном . Оно не содержит фоторецепторов, нечувствительно к свету. Со всей сетчатки к зрительному пятну сходятся нервные волокна, образующие зрительный нерв.

Латеральнее, на расстоянии около 4 мм от слепого пятна выделяют особый участок наилучшего видения – желтое пятно (имеются каротиноиды).

В области желтого пятна отсутствуют кровеносные сосуды. В его центре находится так называемая центральная ямка, которая содержит колбочки.

Она является местом наилучшего видения глаза. По мере удаления от центральной ямки количество колбочек уменьшается, а палочек увеличивается

В сетчатке различают 10 слоев.

Рассмотрим основные слои: наружный - фоторецепторный(слой палочек и колбочек);

пигментный, самый внутренний, плотно примыкающий непосредственно к сосудистой оболочке;

слой биполярных и ганглиозных (аксоны составляют зрительный нерв) клеток. Над слоем ганглиозных клеток находятся их нервные волокна, которые, собираясь вместе, образуют зрительный нерв.

Световые лучи проходят через все эти слои.

Восприятие света осуществляется с участием фоторецепторов, которые относятся ко вторичночувствующим рецепторам. Это означает, что они представляют собой специализированные клетки, передающие информацию о квантах света на нейроны сетчатки, вначале на биполярные нейроны, затем на ганглиозные клетки, информация затем поступает на нейроны подкорковых (таламус и передние бугры четверохолмия) и корковые центры (первичное проекционное поле 17, вторичные проекционные поля 18 19) зрения. Кроме того, в процессах передачи и переработке информации в сетчатке участвуют горизонтальные и амокриновые клетки.

Все нейроны сетчатки образуют нервный аппарат глаза, который не только передает информацию в зрительные центры мозга, но и участвует в ее анализе и переработке. Поэтому ее называют частью мозга, вынесенной на периферию.

Рецепторный отдел зрительного анализатора состоит из фоторецепторных клеток: палочек и колбочек. В сетчатке каждого глаза человека находится 6-7 млн. колбочек и 110-125 млн. палочек. Они распределены в сетчатке неравномерно.

Центральная ямка сетчатки содержит только колбочки. По направлению от центра к периферии сетчатки их число уменьшается, а число палочек возрастает. Колбочковый аппарат сетчатки функционирует в условиях больших освещенностей, они обеспечивают дневное и цветовое зрение; палочковый аппарат ответственен за сумеречное зрение. Колбочки воспринимают цвет, палочки – свет.

В фоторецепторных клетках содержатся светочувствительные пигменты: в палочках – родопсин, в колбочках – йодопсин.

Поражение колбочек вызывает светобоязнь: человек видит при слабом свете, но слепнет при ярком. Отсутствие одного из видов колбочек приводит к нарушению цветоощущения, т.е к дальтонизму. Нарушение функции палочек, возникающее при недостатке в пище витамина А вызывает расстройства сумеречного зрения- куриную слепоту: человек слепнет в сумерках, но днем видит хорошо.

Совокупность фоторецепторов, посылающих свои сигналы к одной ганглиозной клетке, образует ее рецептивное поле.

Цветовое зрение – способность системы зрения реагировать на изменение длины световой волны с формированием цветоощущения.

Цвет воспринимается при действии света на центральную ямку сетчатки, где расположены исключительно колбочки. По мере удаления от центра сетчатки восприятие цвета становится хуже. Периферия сетчатки, где находятся палочки, не воспринимает цвет. В сумерках из-за резкого понижения «колбочкового» зрения и преобладания «периферического» зрения мы не различаем цвет. Поле зрения – это пространство, которое видит один глаз при неподвижном взоре.

Нейроны сетчатки.

Фоторецепторы сетчатки синаптически связаны с биполярными нейронами.

Биполярные нейроны – первый нейрон проводникового отдела зрительного анализатора. При действии света уменьшается выделение медиатора (глутамат) из пресинаптического окончания фоторецептора, что приводит к гиперполяризации мембраны биполярного нейрона. От него нервный сигнал передается на ганглиозные клетки,аксоны которых являются волокнами зрительного нерва. Передача сигнала с фоторецепторов на биполярный нейрон, так и от него на ганглиозную клетку происходит безимпульсным путем. Биполярный нейрон не генерирует импульсов, в виду предельно малого расстояния, на который он передает сигнал.

Аксоны ганглиозных клеток образуют зрительный нерв. Импульсы от многих фоторецепторов сходятся (конвергируют) через биполярные нейроны к одной ганглиозной клетке.

Фоторецепторы, соединенные с одной ганглиозной клеткой, образуют ее рецептивное поле этой клетки.

Т.О. каждая ганглиозная клетка суммирует возбуждение, возникающее в большом числе фоторецепторов. Это повышает световую чувствительность, но ухудшает пространственное разрешение. В центре сетчатки, в районе центральной ямки, каждая колбочка соединена с одной карликовой биполярной клеткой, с которой соединена одна ганглиозная клетка. Это обеспечивает здесь высокое пространственное разрешение, резко уменьшает световую чувствительность.

Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, через отростки которых распространяются сигналы, меняющие синаптическую передачу между фоторецепторами и биполярными клетками (горизонтальные) и между биполярными и ганглиозными клетками (амакриновые клетки). Горизонтальные(звездчатые) и амакринные клетки играют важную роль в процессах анализа и синтеза в нейронах сетчатки. На одну ганглиозную клетку конвергируют до сотни биполярных клеток и рецепторов.

ИЗ сетчатки (биполярные клетки предают сигнализацию на ганглиозные клетки сетчатки, аксоны которых идут в составе правого и левого зрительных нервов) зрительная информация по волокнам зрительного нерва (2-ая пара черепных нервов) устремляется в мозг. Зрительные нервы от каждого глаза встречаются у основания мозга, где формируется их частичный перекрест или хиазма. Здесь часть волокон каждого зрительного нерва переходит на противоположную сторону от своего глаза сторону. Частичный перекрест волокон обеспечивает каждое полушарие мозга информацией от обоих глаз. В затылочную долю правого полушария поступают сигналы от правых половин каждой сетчатки, а в левое полушарие - от левых половин сетчаток.

После зрительного перекреста зрительные нервы называю ЗРИТЕЛЬНЫМИ ТРАКТАМИ. Они проецируются в ряд мозговых структур. В каждом зрительном тракте содержатся нервные волокна, идущие от внутреннего региона сетчатки глаза одноименной стороны и от наружной половины сетчатки другого глаза. После перекреста волокна зрительного тракта направляются к наружным коленчатым телам таламуса , где импульсы переключаются на нейроны, аксоны которых направляются к коре большого мозга в первичную проекционную область зрительной зоны коры(стриарная кора или 17-ое поле по Бродману), затем во вторичную проекционную зону(поле18 и 19, престиарная кора), а в затем – в ассоциативные зоны коры. Корковый отдел зрительного анализатора расположен в затылочной доле (17,18,10-е поля по Бродману). Первичная проекционная область (17-е поле) осуществляет специализированную, но более сложную, чем в сетчатке и в наружных коленчатых телах, переработку информацию. В каждом участке коры сконцентрированы нейроны, которые образуют функциональную колонку. Часть волокон от ганглиозных клеток идут к нейронам верхних бугорков и крыше среднего мозга, в претектальную область и подушку в таламусе (из подушки передается на область 18-ого и 19-ого полей коры).

Претектальная область ответственна за регуляции диаметра зрачка, а передние бугры четверохолмия связаны с глазодвигательными центрами и высшими отделами зрительной системы. Нейроны передних бугров обеспечивают реализацию ориентировачных(сторожевых) зрительных рефлексов. Из передних бугров импульсы идут в ядра глазодвигательного нерва, иннервирующие мышцы глаза, ресничную мышцу и мышцу, суживающую зрачок. Благодаря этому, в ответ на попадание световых волн в глаз зрачок суживается., глазные яблоки поворачиваются в направлении пучка света.

Часть информации от сетчатки по зрительному тракту поступает к супрахиазматическим ядрам гипоталамуса, обеспечивая реализацию околосуточных биоритмов.

Цветовое зрение.

Большинство людей способно различать основные цвета и их многочисленные оттенки. Это объясняется воздействием на фоторецепторы различных по длине волны электромагнитных колебаний.

Цветовое зрение – способность зрительного анализатора воспринимать световые волны различной длины. Цвет воспринимается при действии света на центральную ямку сетчатки, где расположены исключительно колбочки(воспринимают в синем, зеленом, красном диапазоне). По мере удаления от центра сетчатки восприятие цвета становится хуже. Периферия сетчатки,где находятся палочки не воспринимает цвет. В сумерках из-за резкого понижения «колбочкового» зрения и преобладания «периферического» зрения мы не различаем цвет.

Человек, имеющий все три вида колбочек(красный, зеленый, синий) , т.е. трихромат, обладает нормальным цветовосприятием. Отсутствие одного из типа колбочек приводит к нарушению цветоощущения. В сумерках из-за резкого понижения «колбочкового» зрения и преобладания «периферического» зрения, мы не различаем цвет.

Дальтонизм выражается в выпадении восприятия одного из компонентов трехцветного зрения. Возникновение его связывают с отсутствием определенных генов в половой непарной у мужчин Х хромосоме. (таблицы Рабкина- полихроматические таблицы). Ахромазия – это полная цветовая слепота, возникающая вследствие поражения колбочкового аппарата сетчатки. При этом все предметы видятся человеком лишь в разных оттенка серого цвета.

Протанопия « краснослепые»- не воспринимают красного цвета, сине-голубые лучи кажутся бесцветными. Дейтеранопия – « зеленослепые» - не отличают зеленых цветов от темно- красных и голубых; Тртанопия –фиолетовослепые, не воспринимают синего и фиолетового цвета.

Бинокулярное зрение – это одновременное видение предметов двумя глазами, которое дает более выраженное ощущение глубины пространства по сравнению с монокулярным зрением (т.е. зрением одним глазом). Обусловлено симметричным расположением глаз.

Аккомодация – настройка оптического аппарата глаза на определенное расстояние, в результате которой изображение предмета фокусируется на сетчатке.

Аккомодация – приспособление глаза к ясному видению объектов, удаленных на разном расстоянии от глаза. Именно это свойство глаза позволяет одинаково хорошо видеть предметы, находящиеся вблизи или вдали. У человека аккомодация осуществляется за счет изменения кривизны хрусталика - при рассмотрении далеких предметов кривизна уменьшается до минимума, а при рассмотрении близко расположенных предметов – его кривизна увеличивается (выпуклый).

Аномалии рефракции.

Отсутствие необходимого фокусирование изображения на сетчатке глаза мешает нормальному видению.

Миопия (близорукость ) - это вид нарушения рефракции, при котором лучи от предмета после прохождения через светопреломляющий аппарат фокусируются не на сетчатке, а впереди ней - в стекловидном теле, т.е. главный фокус находится перед сетчаткой вследствие увеличения продольной оси. Продольная ось глаза слишком длинная. В этом случае у человека нарушено восприятие далеких предметов. Коррекция такого нарушения проводится с помощью с двояковогнутыми линзами, которые отодвинут сфокусированные изображение на сетчатке.

При гиперметропии (дальнозоркость) - лучи от далеко расположенных предметов в силу слабой преломляющей способности глаза или малой длины глазного яблока фокусируются за сетчаткой, т.е. главный фокус находится за сетчаткой вследствие короткой продольной оси глаза. В дальнозорком глазу продольная ось глаза укорочена. Этот недостаток рефракции может быть компенсирован увеличением выпуклости хрусталика. Поэтому дальнозоркий человек напрягает аккомодационную мышцу, рассматривая не только близкие, но и далекие объекты.

Астигматизм (неодинаковое преломление лучей в разных направлениях) – это такой вид нарушения рефракции, при котором отсутствует возможность схождения лучей в одной точке сетчатки, вследствие различной кривизны роговицы на разных ее участках (в различных плоскостях), в результате чего главный фокус в одном месте может попадать на сетчатку, в другом находиться перед ней или за ней, что искажает воспринимаемое изображение.

Дефекты оптической системы глаза компенсируются в совмещении главного фокуса преломляющих сред глаза сетчаткой.

В клинической практике используют очковые линзы: при миопии – двояковогнутые (рассеивающие) линзы; при гиперметропии – двояковыпуклые (собирательные) линзы; при астигматизме – цилиндрические линзы с различной преломляющей силой в разных их участках.

Аберрация – искажение изображения на сетчатке, вызванное особенностями преломляющих свойств глаза для световых волн различной длины (дифракционная, сферическая, хроматическая).

Сферическая аберрация - неодинаковое преломление лучей в центральном и периферическом участках роговицы и хрусталика, что введет к рассеиванию лучей и резкому изображению.

Острота зрения – способность видеть две максимально близко расположенные точки как различные, т.е. наименьший угол зрения, при котором глаз способен видеть две точки отдельно. Угол между падениями лучей = 1(секунда). В практической медицине остроту зрения обозначают в относительных единицах. При нормальном зрении острота зрение = 1. Острота зрения зависит от количества возбудимых клеток.

Слуховой анализатор

- это совокупность механических, рецепторных и нервных структур, воспринимающих и анализирующих звуковые колебания. Звуковые сигналы представляют собой колебания воздуха с разной частотой и силой. Они возбуждают слуховые рецепторы, находящиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего сенсорная информация передается в слуховую область коры большого мозга.

У человека слуховой анализатор представлен периферическим отделом (наружное, среднее, внутреннее ухо), проводниковым отделом, корковым (височная слуховая кора)

Бинауральный слух – способность слышать одновременно двумя ушами и определять локализацию источника звука.

Звук – колебательные движения частиц упругих тел, распространяющиеся в виде волн в самых различных средах включая, воздушную, и воспринимающиеся ухом. Звуковые волны характеризуются частотой и амплитудой. Частота звуковых волн определяет высоту звука. Ухо человека различает звуковые волны с частотой от 20 до 20000 Гц. Звуковые волны, имеющие гармонические колебания называют тоном. Звук, состоящий из не связанных между собой частот – шум. При большой частоте звуковых волн тон высокий, при малой – низкий.

Звуки разговорной речи имеют частоту 200- 1000Гц. Малые частоты составляют басовый певческий голос, высокие частоты – сопрано.

Единицей измерения громкости звука является децибел. Гармоническое сочетание звуковых волн формирует –тембр звука. По тембру можно различать звуки одинаковой высоты и громкости, на чем основано узнавание людей по голосу.

Периферическая часть у человека морфологически объединена с периферической частью вестибулярного анализатора и поэтому называют орган слуха и равновесия.

Наружное ухо представляет собой звукоулавливающий аппарат. Оно состоит из ушной раковины и наружного слухового прохода, который отделяется барабанной перепонкой от среднего.

Ушная раковина обеспечивает улавливание звуков, их концентрацию в направлении наружного слухового прохода и усиление их интенсивности.

Наружный слуховой проход проводит звуковые колебания к барабанной перепонке, отделяющая наружное ухо от барабанной полости или среднего уха. Колеблется при действии звуковых волн.

Наружный слуховой проход и среднее ухо разделены барабанной перепонкой.

С физиологической точки зрения – слаборастяжимая мембрана. Назначение его- передавать дошедшие до нее по наружному слуховому проходу звуковые волны, точно воспроизводя их силу и частоту колебаний.

Среднее ухо

состоит из барабанной полости (заполненная воздухом), в которой расположены три слуховые косточки: молоточек, наковальня, стремечко.

Рукоятка молоточка сращена с барабанной перепонкой, другая его часть имеет сочленение с наковальней, которая воздействует на стремечко, передающее колебание на мембрану овального окна. К стремечку передаются колебания барабанной перепонки уменьшенной амплитуды, но увеличенной силы. Площадь овального окна в 22 раз меньше барабанной перепонки, во столько же раз усиливает его давление на мембрану овального окна. Даже слабые волны, действующие на барабанную перепонку,способны преодолеть сопротивление мембраны овального окна преддверия и привести к колебаниям овального окна жидкости в улитке.

В полости среднего уха давление равно атмосферному. Это достигается благодаря наличию евстахиевой трубы, соединяющей барабанную полость с глоткой. При глотании евстахиева труба открывается, и давление в среднем ухе уравнивается с атмосферным. Это важно при резком перепаде давления- при взлете и посадке самолета, в скоростном лифте и т. Своевременное раскрытие евстахиевой трубы способствует выравниванию давления, снимает неприятные ощущения и предупреждает разрыв барабанной перепонки.

Внутреннее ухо.

Содержит рецепторный аппарат 2-х анализаторов: вестибулярного (преддверие и полукружные каналы) и слухового, к которому относится улитка с кортиевым органом. Внутреннее ухо расположено в пирамиде височной кости.

Во внутреннем ухе находится улитка , содержащая слуховые рецепторы. Улитка - спирально закрученный костный канал, имеющий 2,5 завитка, почти до самого конца улитки, костный канал разделен 2-мя перепонками: более тонкой – преддверной (вестибулярной) мембраной (мембраной Рейснера) и плотной и упругой - основной мембраной. На вершине улитки обе эти мембраны соединяются, и в них имеются овальное отверстие улитки – геликотрема. Вестибулярная и основная мембрана разделяют костный канал улитки на 3 хода: верхний, средний, нижний. Верхний канал улитки соединяется с нижним каналом (барабанная лестница) Верхний и нижний каналы улитки заполнены перилимфой. Между ними находится средний канал, полость этого канала не сообщается с полостью других каналов и заполнена эндолимфой. Внутри среднего канала улитки на основной мембране расположен звуковоспринимающий аппарат – спиральный (кортиев) орган, содержащий рецепторные волосковые клетки. Над волосками рецепторных клеток располагается текториальная мембрана. При прикосновении к ней (в результате колебаний основной мембраны)волоски деформируются и это приводит к возникновению рецепторного потенциала. Эти клетки трансформируют механические колебания в электрические потенциалы.

Звуковые волны вызывают колебания барабанной перепонки, которые через систему слуховых косточек среднего уха и мембрану овального окна передаются на перилимфу вестибулярной и барабанной лестниц. Это приводит к колебаниям эндолимфы и определенных участков основной мембраны. Звуки высокой частоты вызывают колебание мембраны, расположенных ближе к основанию улитки. В рецепторных клетках возникает рецепторный потенциал, под влиянием которого в окончаниях волокон слухового нерва генерируются ПД, передающиеся далее по проводящим путям.

Т.о.восприятие звука осуществляется с участием фонорецепторов. Их возбуждение под влиянием звуковой волны приводит к генерации рецепторного потенциала, который вызывает возбуждение дендритов биполярного нейрона спирального ганглия.

Рассмотрим, каким образом осуществляется кодирование частоты и сила звук?

Впервые 1863г Г.Гельмгольц пытался дать объяснение процессам кодирования частоты звукового сигнала во внутреннем ухе. Он сформулировал резонансную теорию слуха, в основе которого лежит так называемый принцип места.

Согласно Гельмгольцу, поперечные волокна базилярный мембраны отвечают на звуки неодинаковой частоты по принципу резонанса. Базилярная мембрана может действовать как набор поперечно натянутых эластичных резонирующих полос, подобно струнам рояля(самые короткие из них в узкой части близ основания улитки резонируют в ответ на высокие частоты, а те, что лежат ближе к вершине, в расширенной части базилярной мембраны,- на самые низкие частоты). Соответственно этим участкам возбуждаются и фонорецепторы.

Однако 50-60г20 века исходные предпосылки резонансной теории Гельмгольца были отвергнуты Г.Бекеши. Не отвергая исходный принцип места, Бекеши сформулировал теорию бегущей волны, согласно которой при колебаниях мембраны волны бегут от ее основания к вершине. Согласно Бекеши, бегущая волна имеет наибольшую амплитуду на строго определенном участке мембраны в зависимости от частоты.

При действии тонов определенной частоты колеблется не одно волокно основной мембраны(как предполагал Гельмгольц), а целый участок этой мембраны. Резонирующим субстратом служит не волокно основной мембраны, а столб жидкости определенной длины: чем выше звук, тем меньше длина колеблющегося столба жидкости в каналах улитки и тем ближе к основанию улитки и овальному окну максимальная амплитуда колебания и наоборот.

При колебаниях жидкости в каналах улитки реагируют не отдельные волокна основной мембраны, а большие или меньшие ее участки, и следовательно, возбуждаются разное количество рецепторных клеток, расположенных на мембране.

Ощущение звука возникает и тогда, когда колеблющийся предмет, например камертон, помещен непосредственно на череп, в этом случае основная часть энергии передается костям последнего (костная проводимость). Для возбуждения рецепторов внутреннего уха необходимо движение жидкости типа вызываемого колебаниями стремени при распространении звука через воздушную среду. Звук,передаваемый через кости черепа вызывает такое движение двумя путями: во – первых, волны сжатия и разрежения,проходя по черепу,вытесняют жидкость из объемистого вестибулярного лабиринта в улитку, а затем обратно (компрессионная теория). Во – вторых, масса тимпанально- косточкового аппарата и связанная с ней инерция приводят к отставанию его колебаний от свойственных костям черепа. В результате стремя движется относительно каменистой кости, возбуждая внутреннее ухо(массоинерционная теория).

Проводниковый отдел слухового анализатора начинается с периферического биполярного нейрона, расположенного в спиральном ганглии улитки. Волокна слухового нерва заканчиваются на клетках ядер кохлеарного комплекса продолговатого мозга (второй нейрон). Затем после частичного перекреста волокна идут в медиальное коленчатое тело таламуса, где опять происходит переключение на третий нейрон, от которого информация поступает в кору. Корковый отдел слухового анализатора расположен в верхней части височной извилины большого мозга (поля 41, 42 по Бордману) – это высший акустический центр, где совершается корковый анализ звуковой информации.

Наряду с восходящими путями есть и нисходящие, обеспечивающие контроль высших акустических центров над получением и обработкой информации в периферическом и проводниковом отделах слухового анализатора.

Эти пути начинаются от клеток слуховой коры, переключаются последовательно в медиальных коленчатых телах, задних буграх четверохолмия, верхнеоливарном комплексе, от которого идет оливокохлеарный пучок Расмуссена, достигающий волосковых клеток улитки.

Кроме этого имеются эфферентные волокна, идущие от первичной слуховой зоны т.е. от височной области, к структурам к экстрапирамидной двигательной системы (базальным ганглиям, ограде, верхним буграм четверохолмия, красному ядру, черной субстанции, некоторым ядрам таламуса, РФ ствола мозга) и пирамидной системы.

Эти данные указывают на участие слуховой сенсорной системы в регуляции двигательной активности человека.

Эхолокация- вид акустической ориентации, характерно для животных, у которых функции зрительного анализатора ограничены или полностью исключаются. У них имеются специальные органы – биосонары для генерации звука. У летучих мышей – это лобный выступ- мелон.

У слепых людей имеется аналог эхолокационной способности животных. В основе его лежит чувство препятствия. Она основана на том, что у слепого человека очень обострен слух. Поэтому он подсознательно воспринимает звуки, отражающиеся от предметов, которые сопутствуют его движению. При закрытых ушах эта способность у них пропадает.

Методы исследования слухового анализатора.

Речевая аудиометрия предназначена для исследования чувствительности слухового анализатора(остроты слуха) шепотной речью- исследуемый находится на расстоянии 6 м, повернувшись к исследователю открытым ухом, он должен повторять слова, произносимые исследователем шепотом. При нормальной остроте слуха шепотная речь воспринимается на расстоянии 6-12м.

Камертональная аудиометрия.

(проба Ринне и проба Вебера) предназначена для сравнительной оценки воздушной и костной проводимости звука путем восприятия звучащего камертона. У здорового человека воздушная проводимость выше костной.

В пробе Ринне ножку звучащего камертона устанавливают на сосцевидном отростке. По окончанию восприятия звука бранши камертона подносят к звуковому проходу – здоровый человек продолжает воспринимать звучание камерт она. У человека при использовании С128время воздушной проводимости 75с,а костной-35.

Обонятельный анализатор.

Обонятельный анализатор позволяет определять в присутствии в воздухе пахучих веществ. Он способствует ориентации организма в окружающей среде и совместно с другими анализаторами формированию ряда сложных форм поведение (пищевого, оборонительного, полового).

Поверхность слизистой носа увеличен за счет носовых раковин- гребней, выступающих с боков в просвет носовой полости. Обонятельная область, содержащая большинство сенсорных клеток, ограничена здесь верхней носовой раковиной.

Рецепторы обонятельной системы расположены в области верхних носовых ходов. Обонятельный эпителий находится в стороне от главного дыхательного пути, имеет толщину 100-150мкм и содержит рецепторные клетки, расположенные между опорными клетками. На поверхности каждой обонятельной клетки имеется сферическое утолщение – обонятельная булава, из которой выступает по 6-12 тончайших волосков (ресничек), в мембранах которых находятся специфические белки – рецепторы. Эти реснички не способны активно двигаться, т.к. погружены в слой слизи, покрывающий обонятельный эпителий. Пахучие вещества, приносимые вдыхаемым воздухом, вступают контакт с их мембраной, что приводит к формированию рецепторного потенциала в дендрите обонятельного нейрона, а затем возникновению в нем ПД. Обонятельные реснички погружены в жидкую среду, вырабатываемую обонятельными (боуменовы) железами. Во всей слизистой находятся еще свободные окончания тройничного нерва, некоторые реагируют на запах.

В глотке обонятельные стимулы способны возбуждать волокна языкоглоточного и блуждающего нервов.

Обонятельный рецептор – это первичная биполярная сенсорная клетка, от которой отходят два отростка: сверху- дендрит, несущий реснички, а от основания отходит безмиелиновый аксон. Аксоны рецепторов образуют обонятельный нерв, который пронизывает основание черепа и вступает в обонятельную луковицу (в коре вентральной поверхности лобной доли). Обонятельные клетки постоянно обновляются. Продолжительность их жизни – 2 мес. Запах воспринимается только тогда, когда слизистая носа увлажнена. Импульсация передается по обонятельному нерву в обонятельный луковицы (первичный центр), где уже формируется образ.

Молекулы пахучих веществ попадают в слизь, вырабатываемые обонятельными железами, с постоянным током воздуха или из ротовой полости во время еды. Принюхивание ускоряет приток пахучих веществ к слизи. В слизи молекулы пахучих веществ на короткое время связываются нерецепторными белками. Некоторые молекулы достигают ресничек обонятельного рецептора и взаимодействуют с находящимися в них обонятельным рецепторным белком. Обонятельный белок активирует ГТФ – связывающий белок, и тот в свою очередь активирует фермент аденилатциклазу, синтезирующую ц АМФ. Повышение в цитоплазме концентрации ц АМФ вызывает открывание в плазматической мембране рецепторной клетки натриевых каналов и как следствие -генерацию деполяризационного рецепторного потенциала. Это приводит к импульсному разряду в аксоне (волокно обонятельного нерва).

Каждая рецепторная клетка способна ответить физиологическим возбуждением на характерный для нее спектр пахучих веществ.

Каждая обонятельная клетка имеет только один тип мембранного рецепторного белка. Сам же этот белок способен связывать множество пахучих молекул.

Каждый обонятельный рецептор отвечает не на один, а на многие пахучие вещества, отдавая « предпочтение » некоторым из них.

Афферентные волокна не переключаются в таламусе и не переходят на противоположную сторону мозга.

Один обонятельный рецептор может быть возбужден одной молекулой пахучего вещества, а возбуждение небольшого числа рецепторов приводит к возникновению ощущения . При низких концентрациях пахучего вещества человек лишь ощущает запах и не может определить его качество (порог обнаружения). При более высоких концентрациях запах вещества становится опознаваемым и человек может его определить (порог опознание). При длительном действии запахового стимула ощущение ослабевает, наступает адаптация. В обонятельном восприятии у человека присутствует эмоциональный компонент. Запах может вызвать ощущения удовольствия или отвращения и при этом меняется состояние человека.

Влияние обоняния на другие функциональные системы.

Прямая связь с лимбической системой объясняет выраженный эмоциональный компонент обонятельных ощущений. Запахи могут вызывать удовольствие или отвращение, влияя соответствующим образом на аффективное состояние организма. Обонятельные стимулы имеют значение обонятельных стимулов в регуляции полового поведения.

У человека встречается следующие виды нарушений обоняния : аносмия – отсутствие обонятельной чувствительности; гипосмия – понижение обоняние; гиперосмия – его повышение; паросмия – неправильное восприятие запахов; обонятельная агнозия – человек ощущает запах, но не узнает его. Обонятельные галлюцинации возникают обонятельные ощущения в отсутствии пахучих веществ. Это может быть при травмах головы, аллергических ринитах, при шизофрении.

Электроольфактограмма – суммарный электрический потенциал, регистрируемый от поверхности обонятельного эпителия.

Вкусовой анализатор.

Вкусовой анализатор обеспечивает возникновение вкусовых ощущений. Его главное назначение заключается как в оценке вкусовых свойств пищи, так и в определении ее пригодности к употреблению, а так же в формировании аппетита, влияют на процесс пищеварения. Они влияют на секрецию пищеварительных желез.

В формировании вкусовых ощущений важная роль принадлежит хеморецепции. Вкусовые рецепторы несут информацию о характере и концентрации веществ, поступающих в рот.

Рецепторы вкуса (вкусовые почки) расположены на языке, задней стенке глотки, мягком небе, миндалинах и надгортаннике. Больше всего их на кончике, краях и задней части языка. Вкусовая почка имеет колбовидную форму. Вкусовая почка не достигает поверхности слизистой оболочки языка и соединена с полостью рта через вкусовую пору. Железы, расположенные между сосочками, выделяют омывающую вкусовые почки жидкость.

У взрослых сенсорные вкусовые клетки расположены на поверхности языка. Вкусовые клетки – наиболее коротко живущие эпителиальные клетки организма: в среднем через 250 ч старая клетка сменяется молодой. В узкой части вкусовой почки находятся микроворсинки рецепторных клеток, на которых расположены хеморецепторы. Они контактируют с жидким содержанием ротоглотки через небольшое отверстие в слизистой оболочке, называемое вкусовой порой.

Вкусовые клетки генерируют при стимуляции рецепторный потенциал. Это возбуждение синаптически передается афферентным волокнам ЧМ-ых нервов, которые проводят его в мозг в виде импульсов.

Афферентные волокна (биполярные нейроны), проводящие возбуждение от вкусовых рецепторов, представлены нервами – барабанной струной (ветвь лицевого нерва,VII),который иннервирует переднюю и боковые части языка, также языкоглоточным нервом, иннервирующим заднюю часть языка. Афферентные вкусовые волокна объединяются в солитарный тракт, который заканчивается в соответствующем ядре продолговатого мозга.

В нем волокна образуют синапсы нейронами второго порядка, аксоны которых направляются к вентральному таламусу (здесь расположены третьи нейроны проводникового отдела вкусового анализатора), а так же центрам слюновыделения, жевание, глотание в стволе мозга. Четвертые нейроны вкусового анализатора локализуются в коре большого мозга в нижней части соматосенсорной зоны в области представительства языка (постцентральной извилине коры большого мозга). В результате обработки информации на перечисленных уровнях число нейронов с высокоспецифичной вкусовой чувствительностью возрастает. Ряд корковых клеток реагируют только на вещества с одним вкусовым качеством. Расположение таких нейронов указывает на высокую степень пространственной организации вкусового чувства.

Большинство этих нейронов мультиполярны. Они реагируют на вкусовые, температурные, механические и ноцицептивные раздражители т.е. реагируют не только на вкус, но и на температурную и механическую стимуляцию языка.

Вкусовая чувствительность человека.

Человек различает четыре основных вкусовых качеств: сладкое, кислое, горькое, соленое.

У большинства людей, отдельные участки языка обладают неодинаковой чувствительностью к веществам различного вкусового качества: кончик языка наиболее чувствителен к сладкому, боковые поверхности - к соленому и кислому, корень (основание)– к горькому.

Чувствительность к горьким веществам существенно выше. Поскольку, они часто ядовиты, это особенность предостерегает нас от опасности, даже их концентрация в воде и пище очень низкая. Сильные горькие раздражители легко вызывают рвоту или позывы на нее. Поваренная соль в низкой концентрации кажется сладкой, чисто соленой становится только при ее повышении. Т.О. воспринимаемое качество вещества зависит от его концентрации.

Вкусовое восприятие зависит от ряда факторов. В условиях голода отмечается повышенная чувствительность вкусовых рецепторов к различным вкусовым веществам, при насыщении, после приема пищи снижается. Такая реакция является результатом рефлекторных влияний от рецепторов желудка, и получила название ГАСТРОЛИНГВАЛЬНОГО РЕФЛЕКСА. В этом рефлексе вкусовые рецепторы выступают в роли эффекторов.

Биологическая роль вкусовых ощущений заключается не только в проверке съедобности пищи; также влияют на процессы пищеварения. Связи с вегетативными эфферентами позволяют вкусовым ощущениям влиять на секрецию пищеварительных желез, причем не только на ее интенсивность, но и на состав, в зависимости,н-р, от того, сладкие и соленые вещества преобладают в пище.

Вкусовое восприятие изменяется при эмоциональном возбуждении, при ряде заболеваниях.

С возрастом способность к различению вкуса снижается. К этому же ведут потребление биологически активных веществ типа кофеина и интенсивное курение.

Выделяют расстройства вкусового восприятия: агевзия – потеря или отсутствие вкусовой чувствительности; гипогевзия – ее понижение; гипергевзия- ее повышение; дисгевзия –расстройство тонкого анализа вкусовых ощущений.

Вестибулярный (статокинетический) анализатор.

Для оценки направления действия гравитационного поля т.е для определения положения организма в трехмерном пространстве и возник вестибулярный анализатор.

Обеспечивает восприятие информации о прямолинейных и вращательных ускорениях движения тела и изменениях положения головы в пространстве, а также о действии земного тяготения. Важную роль принадлежит в пространственной ориентации человека при активном и пассивном движении, поддержании позы и регуляции движений.

При активных движениях вестибулярная система получает, передает, анализирует информацию об ускорениях и замедлениях, возникающих процессе прямолинейного и вращательного движения, при изменении головы и пространстве.

При пассивном движении корковые отделы запоминают направление движения, повороты, пройденное расстояние.

В нормальных условиях пространственная ориентировка обеспечивается совместной деятельностью зрительной и вестибулярной систем.

При равномерном движении или в условиях покоя рецепторы вестибулярной сенсорной системы не возбуждаются.

В целом, вся информация, идущая от вестибулярного аппарата в мозг, используется для регуляции позы и локомоций, т.е. в управлении скелетной мускулатурой.

У человека его периферический отдел представлен вестибулярным аппаратом.

Периферический (рецепторный) отдел анализатора представлен двумя типами рецепторных волосковых клеток вестибулярного органа. Он расположен вместе с улиткой в лабиринте височной кости и состоит из преддверия и трех полукружных каналов. В улитке располагаются слуховые рецепторы.

Преддверие включает два мешочка:сферический (саккулюс) и эллиптический или маточку(утрикулюс).Полукружные каналы расположены в трех взаимно перпендикулярных плоскостях. Они в своими устьями открываются в преддверие. Один из концов каждого канала расширен (ампула). Все эти структуры образуют перепончатый лабиринт, заполненной эндолимфой. Между перепончатым и костным лабиринтом находится перилимфа.В мешочках преддверия находится оттолитовый аппарат: скополение рецепторных клеток (вторично- чувствующие механорецепторы) на возвышения или пятнах.В ампулах полукружных каналов имеются гребешки (кристы).Пятна и гребешки содержат рецепторные эпителиальные клетки, имеющие на свободной поверхности тонкие многочисленные (40-60 штук) волоски (стереоцилии) и один более толстый и длинный волосок (киноцилию).

Рецепторные клетки преддверия покрыта отолитовой мембраной – желеобразной массой из мукополисахароидов, содержащей значительное количество кристалликов карбоната кальция (отолитов). В ампулах желеобразная масса не содержит отолитов, называется листовидной мембраной. Волоски (реснички) рецепторных клеток погружены в эти мембраны.

Возбуждение волосковых клеток происходит при изгибании стереоцилий в сторону киноцилий, что приводит к открытию механочувствительных ионных (калиевых) каналов (ионы К из эндолимфы по градиенту концентрации поступают в цитоплазму). Результатом такого входа ионов К является деполяризация мембраны. Возникает рецепторный потенциал, который приводит к выделению АХ в синапсах, существующие между волосковыми клетками и дендритами афферентных нейронов. Это сопровождается увеличением частоты нервных импульсов, идущих к вестибулярным ядрам продолговатого мозга.

При смещении стереоцилий в противоположную сторону от киноцилий происходит закрытие ионных каналов, гиперполяризация мембраны и понижение активности волокно вестибулярного нерва.

Адекватным раздражителем для рецепторных клеток преддверия являются линейные ускорения и наклоны головы или всего тела, приводящие к скольжению отолитовых мембран под действием силы тяжести и изменению положения (изгибанию) волосков. Для рецепторных клеток ампул полукружных каналов адекватным стимулом являются угловые ускорения в разных плоскостях при поворотах головы или вращения тела.

Проводниковый отдел вестибулярного анализатора представлен афферентными и эфферентными волокнами.

Первым нейроном, воспринимающими возбуждение волосковых клеток вестибулярного аппарата, являются биполярные нейроны, составляют основу вестибулярного узла(ганглия Скарпе), который залегает на дне внутреннего слухового прохода. Их дендриты, контактируют с волосковыми клетками в ответ на возбуждения этих клеток- рецепторов генерируют ПД, которые передаются по аксону в ЦНС по аксонам. Аксоны биполярных клеток образуют вестибулярную или преддверную часть 8пары ЧМН. В вестибулярном нерве и в покое наблюдается спонтанная электрическая активность. Частота разрядов в нерве повышается при поворотах головы в одну сторону и тормозится при повороте в другую сторону.

Афферентные волокна(волокна вестибулярной части нерва ) направляются к вестибулярным ядрам продолговатого мозга, от них – к таламусу, в котором происходит переключение импульсов на следующий афферентный нейрон,проводящий импульсацию непосредственно к нейронам коры большого мозга.

Вестибулярные ядра продолговатого мозга связаны со всеми отделами ЦНС: спинным мозгом, мозжечком, РФ ствола мозга, глазодвигательными ядрами, корой головного мозга, вегетативной НС. Выделяют 5 проекционных систем.

Вот типичный больной с таким поражением.

Он внимательно рассматривает предложенное ему изображение очков. Он смущен и не знает, что означает это изображение. Он начинает гадать: «Кружок... и еще кружок... и палка... перекладина... наверное, это велосипед?» Он рассматривает изображение петуха с красивыми разноцветными перьями хвоста и, не воспринимая фазу целого образа, говорит: «Наверное, это пожар - вот языки пламени...».

В случаях массивных поражений вторичных отделов затылочной коры явления оптической агнозии могут принимать грубый характер.

В случаях ограниченных поражений этой области они выступают в более стертых формах и проявляются лишь при рассматривании сложных картин или в опытах, где зрительное восприятие осуществляется в усложненных условиях (например, в условиях дефицита времени). Такие больные могут принять телефон с вращающимся диском за часы, а коричневый диван - за чемодан и т. п. Они перестают узнавать контурные или силуэтные изображения, затрудняются, если изображения предъявляются им в «зашумленных» условиях, например когда контурные фигуры перечеркнуты ломаными линиями (рис. 56) или когда они составлены из отдельных элементов и включены в сложное оптическое поле (рис. 57). Особенно отчетливо все эти дефекты зрительного восприятия выступают, когда опыты с восприятием проводятся в условиях дефицита времени - 0,25-0,50 с (с помощью тахистоскопа).

Естественно, что больной с оптической агнозией оказывается не в состоянии не только воспринимать целые зрительные структуры, но и изображать их . Если ему дается задача нарисовать какой-нибудь предмет, легко обнаружить, что образ этого предмета у него распался и что он может изобразить (или, вернее, обозначить) лишь его отдельные части, давая графическое перечисление деталей там, где нормальный человек рисует изображение.

Основные принципы строения зрительного анализатора.

Можно выделить несколько общих принципов строения всех анализаторных систем :

а) принцип параллельной многоканальной переработки информации, в соответствии с которым информация о разных параметрах сигнала одновременно передается по различным каналам анализаторной системы;

б) принцип анализа информации с помощью нейронов-детекторов, направленного на выделение как относительно элементарных, так и сложных, комплексных характеристик сигнала, что обеспечивается разными рецептивными полями;

в) принцип последовательного усложнения переработки информации от уровня к уровню, в соответствии с которым каждый из них осуществляет свои собственные анализаторные функции;



г) принцип топического («точка в точку» ) представительства периферических рецепторов в первичном поле анализаторной системы;

д) принцип целостной интегративной репрезентации сигнала в ЦНС во взаимосвязи с другими сигналами, что достигается благодаря существованию общей модели (схемы) сигналов данной модальности (по типу «сферической модели цветового зрения»). На рис. 17 и 18, А, Б, В, Г (цветная вклейка) показана мозговая организация основных анализаторных систем: зрительной, слуховой, обонятельной и кожно-кинестетической. Представлены разные уровни анализаторных систем - от рецепторов до первичных зон коры больших полушарий.

Человек, как и все приматы, относится к «зрительным» млекопитающим; основную информацию о внешнем мире он получает через зрительные каналы. Поэтому роль зрительного анализатора для психических функций человека трудно переоценить.

Зрительный анализатор, как и все анализаторные системы, организован по иерархическому принципу. Основными уровнями зрительной системы каждого полушария являются: сетчатка глаза (периферический уровень); зрительный нерв (II пара); область пересечения зрительных нервов (хиазма); зрительный канатик (место выхода зрительного пути из области хиазмы); наружное или латеральное коленчатое тело (НКТ или ЛКТ); подушка зрительного бугра, где заканчиваются некоторые волокна зрительного пути; путь от наружного коленчатого тела к коре (зрительное сияние) и первичное 17-е поле коры мозга (рис. 19, А, Б, Вт

рис. 20; цветная вклейка). Работа зрительной системы обеспечивается II, III, IV и VI парами черепно-мозговых нервов.

Поражение каждого из перечисленных уровней, или звеньев, зрительной системы характеризуется особыми зрительными симптомами, особыми нарушениями зрительных функций.



Первый уровень зрительной системы - сетчатка глаза - представляет собой очень сложный орган, который называют «куском мозга, вынесенным наружу».

Рецепторный строй сетчатки содержит два типа рецепторов:

· ¦ колбочки (аппарат дневного, фотопического зрения);

· ¦ палочки (аппарат сумеречного, скотопического зрения).

Когда свет достигает глаза, возникающая в этих элементах фотопическая реакция преобразуется в импульсы, передающиеся через различные уровни зрительной системы в первичную зрительную кору (17-е поле). Количество колбочек и палочек неравномерно распределено в разных областях сетчатки; колбочек значительно больше в центральной части сетчатки (fovea) - зоне максимально ясного зрения. Эта зона несколько сдвинута в сторону от места выхода зрительного нерва - области, которая называется слепым пятном (papilla n. optici).

Человек относится к числу так называемых фронтальных млекопитающих, т. е. животных, у которых глаза расположены во фронтальной плоскости. Вследствие этого зрительные поля обоих глаз (т. е. та часть зрительной среды, которая воспринимается каждой сетчаткой отдельно) перекрываются. Это перекрытие зрительных полей является очень важным эволюционным приобретением, позволившим человеку выполнять точные манипуляции руками под контролем зрения, а также обеспечившим точность и глубину видения (бинокулярное зрение). Благодаря бинокулярному зрению появилась возможность совмещать образы объекта, возникающие в сетчатках обоих глаз, что резко улучшило восприятие глубины изображения, его пространственных признаков.

Зона перекрытия зрительных полей обоих глаз составляет приблизительно 120°. Зона монокулярного видения составляет около 30° для каждого глаза; эту зону мы видим только одним глазом, если фиксировать центральную точку общего для двух глаз поля зрения.

Зрительная информация, воспринимаемая двумя глазами или только одним глазом (левым или правым), Зрительная информация, воспринимаемая двумя глазами или только одним глазом (левым или правым), проецируется на разные отделы сетчатки и, следовательно, поступает в разные звенья зрительной системы.

В целом, участки сетчатки, расположенные к носу от средней линии (нозальные отделы), участвуют в механизмах бинокулярного зрения, а участки, расположенные в височных отделах (темпоральные отделы), - в монокулярном зрении.

Кроме того, важно помнить, что сетчатка организована и по верхненижнему принципу: ее верхние и нижние отделы представлены на разных уровнях зрительной системы по-разному. Знания об этих особенностях строения сетчатки позволяют диагностировать ее заболевания (рис. 21; цветная вклейка).

Второй уровень работы зрительной системы - зрительные нервы (II пара). Они очень коротки и расположены сзади глазных яблок в передней черепной ямке, на базальной поверхности больших полушарий головного мозга. Разные волокна зрительных нервов несут зрительную информацию от разных отделов сетчаток. Волокна от внутренних участков сетчаток проходят во внутренней части зрительного нерва, от наружных участков - в наружной, от верхних участков - в верхней, а от нижних - в нижней.

Область хиазмы составляет третье звено зрительной системы . Как известно, у человека в зоне хиазмы происходит неполный перекрест зрительных путей. Волокна от нозальных половин сетчаток поступают в противоположное (контралатеральное) полушарие, а волокна от темпоральных половин - в ипсилатеральное. Благодаря неполному перекресту зрительных путей зрительная информация от каждого глаза поступает в оба полушария. Важно помнить, что волокна, идущие от верхних отделов сетчаток обоих глаз, образуют верхнюю половину хиазмы, а идущие от нижних отделов - нижнюю; волокна от fovea также подвергаются частичному перекресту и расположены в центре хиазмы.

Четвертый уровень зрительной системы - наружное или латеральное коленчатое тело (НКТ или ЛКТ). Это часть зрительного бугра, важнейшее из таламических ядер, представляет собой крупное образование, состоящее из нервных клеток, где сосредоточен второй нейрон зрительного пути (первый нейрон находится в сетчатке). Таким образом, зрительная информация без какой-либо переработки поступает непосредственно из сетчатки в НКТ. У человека 80 % зрительных путей, идущих от сетчатки, заканчиваются в НКТ, остальные 20 % идут в другие образования (подушку зрительного бугра, переднее двухолмие, стволовую часть мозга), что указывает на высокий уровень кортикализации зрительных функций. НКТ, как и сетчатка, характеризуется топическим строением, т. е. различным областям сетчатки соответствуют различные группы нервных клеток в НКТ. Кроме того, в разных участках НКТ представлены области зрительного поля, которые воспринимаются одним глазом (зоны монокулярного видения), и области, которые воспринимаются двумя глазами (зоны бинокулярного видения), а также область области, которые воспринимаются двумя глазами (зоны бинокулярного видения), а также область центрального видения.

Как уже было сказано выше, помимо НКТ существуют и другие инстанции, куда поступает зрительная информация, - это подушка зрительного бугра, переднее двухолмие и стволовая часть мозга. При их поражении никаких нарушений зрительных функций как таковых не возникает, что указывает на иное их назначение. Переднее двухолмие, как известно, регулирует целый ряд двигательных рефлексов (типа старт-рефлексов), в том числе и тех, которые «запускаются» зрительной информацией. По-видимому, сходные функции выполняет и подушка зрительного бугра, связанная с большим количеством инстанций, в частности - с областью базальных ядер. Стволовые структуры мозга участвуют в регуляции общей неспецифической активации мозга через коллатерали, идущие от зрительных путей. Таким образом, зрительная информация, идущая в стволовую часть мозга, является одним из источников, поддерживающих активность неспецифической системы (см. гл. 3).

Пятый уровень зрительной системы - зрительное сияние (пучок Грациоле) - довольно протяженный участок мозга, находящийся в глубине теменной и затылочной долей. Это широкий, занимающий большое пространство веер волокон, несущих зрительную информацию от разных участков сетчатки в разные области 17-го поля коры.

Последняя инстанция - первичное 17-е поле коры больших полушарий, расположено главным образом на медиальной поверхности мозга в виде треугольника, который направлен острием вглубь мозга. Это значительная по протяженности площадь коры больших полушарий по сравнению с первичными корковыми полями других анализаторов, что отражает роль зрения в жизни человека. Важнейшим анатомическим признаком 17-го поля является хорошее развитие IV слоя коры, куда приходят зрительные афферентные импульсы; IV слой связан с V слоем, откуда «запускаются» местные двигательные рефлексы, что характеризует «первичный нейронный комплекс коры» (Г. И. Поляков, 1965). 17-е поле организовано по топическому принципу, т. е. разные области сетчатки представлены в его разных участках. Это поле имеет две координаты: верхне-нижнюю и передне-заднюю. Верхняя часть 17-го поля связана с верхней частью сетчатки, т. е. с нижними полями зрения; в нижнюю часть 17-го поля поступают импульсы от нижних участков сетчатки, т. е. от верхних полей зрения. В задней части 17-го поля представлено бинокулярное зрение в передней части - периферическое монокулярное зрение.



Похожие публикации