Значение слова фоторецепторы в большом российском энциклопедическом словаре. Строение и функции сетчатки глаза


Мозг через орган зрения получает более 90% сенсорной информации. Фоторецепторы сетчатки глаза из всего спектра электромагнитных излучений регистрируют только волны длиной от 400 до 800 нм. Физиологическая роль глаза как органа зрения двояка. Во-первых, это оптический инструмент, собирающий свет от объектов внешней среды и проецирующий их изображения на сетчатку. Во-вторых, фоторецепторы сетчатки преобразуют оптические изображения в нервные сигналы, передаваемые в зрительную кору.

1. Основные зрительные функции:

Светочувствительность – способность различать разные интенсивности диффузного освещения;

Цветовое зрение – различение длин волн в пределах видимого спектра;

Распознавание формы – основано на фокусировке предмета на сетчатке;

Восприятие движения – происходит в результате движения сфокусированного изображения объекта на рецепторном поле как на экране;

Восприятие глубины – основано на объединении информации от двух глаз.

2. Структурные особенности зрительного анализатора.

Отделы зрительного анализатора:

периферический отдел – оптический аппарат глаза и сетчатка;

проводниковый отдел;

корковый отдел.

Орган зрения включает глазное яблоко , соединённое через зрительный нерв с мозгом, защитный аппарат (в том числе веки и слёзные железы) и аппарат движения (поперечнополосатые глазодвигательные мышцы).

Глазное яблоко . Стенка глазного яблока образована оболочками: в передней части расположены конъюнктива и роговица , в задней - сетчатка , сосудистая оболочка и склера . Полость глазного яблока занимает стекловидное тело . Кпереди от стекловидного тела расположен двояковыпуклый хрусталик . Между роговицей и хрусталиком находятся содержащие водянистую влагу перeдняя камера (между задней поверхностью роговицы и радужкой со зрачком) и задняя камера глаза (между радужкой и хрусталиком).

Роговица - прозрачная оболочка передней стенки глаза. Лимб - граница между прозрачной роговицей и непрозрачной склерой.

Склера - наружная непрозрачная оболочка глазного яблока. В месте соединения склеры с роговицей расположены небольшие сообщающиеся полости, в совокупности образующие шлеммов канал , обеспечивающий отток жидкости из передней камеры глаза.

Сосудистая оболочка осуществляет питание сетчатки и содержит большое количество сосудов, обусловливающих розовую окраску при офтальмоскопии. Радужка - передний вырост сосудистой оболочки. Другая часть сосудистой оболочки - ресничное тело - участвует в аккомодации зрения, регулируя форму хрусталика.

Радужная оболочка расположена между роговицей и хрусталиком, разделяет переднюю и заднюю камеры глаза. Радужка имеет в центре отверстие - зрачок . В состав радужки входят гладкие мышцы: циркулярная суживающая (сфинктер зрачка) и радиальная расширяющая (дилататор зрачка). При раздражении парасимпатических (холинергических) нервных волокон зрачок суживается, симпатическая (адренергическая) стимуляция приводит к расширению зрачка.

Ресничное тело находится позади от радужки вокруг хрусталика и обеспечивает аккомодацию. Основную массу ресничного тела занимает ресничная мышца (парасимпатическая иннервация). От ресничного тела по направлению к хрусталику отходят ресничные отростки , к которым прикрепляется циннова связка . При сокращении циркулярных волокон ресничной мышцы циннова связка расслабляется и хрусталик принимает более сферическую форму (увеличение рефракции).

Водянистая влага . В передней и задней камерах глаза находится жидкость - водянистая влага. Её выделяет ресничное тело в заднюю камеру глаза, через зрачок водянистая влага попадает в переднюю камеру глаза, направляется в пространства радужно–роговичного угла и оттекает в венозный синус склеры. При нарушении оттока водянистой влаги происходит повышение внутриглазного давления (глаукома), что вызывает ишемию сетчатки и может привести к слепоте.

Стекловидное тело - прозрачная среда глаза, заполняет полость между хрусталиком и сетчатой оболочкой; стекловидное тело - гель, содержащий воду, коллаген, белок витреин и гиалуроновую кислоту. Через стекловидное тело от сетчатки к хрусталику проходит канал.

Хрусталик. Эпителиальные клетки хрусталика связаны щелевыми контактами, содержат кристаллины и с возрастом утрачивают ядра и органеллы: это прозрачные хрусталиковые волокна , составляющие основную часть хрусталика. Пpозpачность хpусталика и/или его капсулы нарушается при катаракте.

Сетчатая оболочка (сетчатка) - внутренняя оболочка глаза - имеет зрительный отдел, по зубчатому краю переходящий в слепой отдел, покрывающий сзади ресничное тело и радужку. У заднего края оптической оси глаза сетчатка имеет округлое жёлтое пятно (пятно сетчатки) диаметром около 2 мм. Центральная ямка - углубление в средней части жёлтого пятна - место наилучшего восприятия. Зрительный нерв выходит из сетчатки на 4 мм кнутри от жёлтого пятна. Здесь образуется диск зрительного нерва (слепое пятно ), где отсутствует зрительное восприятие. В центре диска имеется углубление, в котором видны питающие сетчатку сосуды.

3. Защитный аппарат глаза.

Длинные ресницы верхнего века предохраняют глаз от попадания пыли; мигательный рефлекс (моргание) осуществляется автоматически. Веки содержат мейбомиевы железы , благодаря которым края век всегда увлажнены. Конъюнктива - тонкая слизистая оболочка - выстилает как внутреннюю поверхность век, так и наружную поверхность глазного яблока. Слёзная железа выделяет слёзную жидкость, которая орошает конъюнктиву.

Слёзная жидкость выполняет три основные функции: поддерживает увлажнённой конъюнктиву, действует как мягкий антисептик и вымывает пыль и мелкие частицы, попадающие на конъюнктиву. Раздражители (пыль или микроорганизмы), а также эмоции вызывают увеличение секреции слёзной жидкости до такой степени, что дренажная система (слёзные протоки, слёзный мешок, носослёзный канал) переполняется и начинают течь слёзы.

Моргание - нормальный рефлекторный акт, происходящий несколько раз в минуту - способствует увлажнению конъюнктивы. Оно также возникает как защитный рефлекс при внезапном приближении какого-либо предмета близко к поверхности лица (морды).

4. Оптический аппарат глаза

Оптический аппарат глаза – это система линз, формирующая на сетчатке перевернутое и уменьшенное изображение внешнего мира.

К компонентам оптического аппарата глаза относят: роговицу, камеры с жидкостью, радужную оболочку и зрачок, хрусталик с сумкой, стекловидное тело, секрет слезных желез.

Глаз имеет систему линз с различной кривизной и различными показателями преломления световых лучей, включающую четыре преломляющих среды между: 1) воздухом и передней поверхностью роговицы; 2) задней поверхностью роговицы и водянистой влагой передней камеры; 3) водянистой влагой передней камеры и хрусталиком; 4) задней поверхностью хрусталика и стекловидным телом.

Регуляция оптического аппарата осуществляется посредством рефлекса хрусталика (аккомодации) и рефлекса зрачка.

Аккомодация - приспособление глаза к чёткому видению предметов, расположенных на различном расстоянии. Основная роль в процессе аккомодации принадлежит хрусталику, способному изменять свою кривизну. Хрусталик изменяет форму от умеренно выпуклой до значительно выпуклой. При взгляде на удалённые предметы ресничные мышцы расслабляются, поддерживающая связка растягивает и уплощает хрусталик, придавая ему дискообразную форму. При взгляде на близкие предметы для полной фокусировки необходима более значительная кривизна хрусталика, поэтому мышцы ресничного тела сокращаются, связки расслабляются, а хрусталик в силу своей эластичности становится более выпуклым.

Аккомодация контролируется парасимпатическими нервами, поступающими в глаз в составе глазодвигательного нерва. Стимуляция парасимпатического нерва вызывает сокращение ресничной мышцы, что расслабляет связочный аппарат хрусталика и приводит к увеличению его преломляющей силы. Следовательно, по мере того, как удалённый предмет приближается к глазу, возрастает парасимпатическая импульсация к ресничной мышце, и уровень её сокращения постоянно поддерживает в фокусе рассматриваемый предмет. Симпатическая стимуляция незначительно расслабляет ресничную мышцу, но этот эффект практически не оказывает влияния на нормальный аккомодационный механизм.

Способность к аккомодации зависит от функционального состояния животного (при утомлении острота зрения снижается), возраста. У старых животных хрусталик теряет свою эластичность, практически не изменяет свою кривизну и развивается дальнозоркость. При этом удаленные предметы видятся хорошо, а находящиеся вблизи – плохо. Обратное явление называется близорукостью. Близорукость и дальнозоркость часто встречается у лошадей, а близорукость – у овец.

Зрачковый рефлекс . Зрачок - круглое отверстие в радужной оболочке - очень быстро меняется в размере в зависимости от количества света, падающего на сетчатку. Просвет зрачка может изменяться от 1 мм до 8 мм. Это придаёт зрачку свойства диафрагмы. Сетчатка очень чувствительна к свету, слишком большое количество света искажает цвета и раздражает глаз. Изменяя просвет, зрачок регулирует количество света, попадающего в глаз. Яркий свет вызывает безусловнорефлекторную вегетативную реакцию, замыкающуюся в среднем мозге: сфинктер зрачка в радужной оболочке обоих глаз сокращается, а дилататор зрачка расслабляется, в результате диаметр зрачка уменьшается. Плохое освещение заставляет оба зрачка расшириться, чтобы достаточное количество света могло достичь сетчатки и возбудить фоторецепторы.

5. Вегетативная иннервация глаза .

Глаз иннервируется симпатическими и парасимпатическими нервными волокнами.

Парасимпатические преганглионарные волокна в составе глазодвигательного нерва проходят к ресничному ганглию и от него постганглионарные волокна в виде ресничных нервов поступают в глаз. Волокна этих нервов иннервируют сфинктер зрачка. Соответственно ацетилхолин и эзерин вызывают сужение зрачка, а блокада холинорецепторов сфинктера радужки атропином приводит к расширению зрачка.

Симпатическая иннервация глаза происходит из клеток бокового рога первых грудных сегментов спинного мозга. Отсюда симпатические волокна проходят в верхний симпатический ганглий, где они синаптически контактируют с постганглионарными нейронами. Постганглионарные симпатические волокна распространяются по поверхности сонной артерии и её ветвей и достигают глаза. Здесь симпатические волокна иннервируют дилататор зрачка, и возбуждение симпатических волокон расширяет зрачок. Адреналин и его аналоги также расширяют зрачок. Зрачки расширяются при гипоксии, болевом шоке, при эмоциях ярости и страха. Симпатические волокна иннервируют также некоторые наружные глазные мышцы.

6. Строение и функции сетчатки

Сетчатка прилегает к стекловидному телу и является внутренней оболочкой глазного яблока, содержащей фоторецепторы – палочки и колбочки, воспринимающие световые лучи, а так же нервные клетки с многочисленными отростками.

Сетчатка представлена несколькими слоями:

· Пигментный слой;

· Слой фоторецепторов;

· Слой горизонтальных клеток – содержит тормозные нейроны;

· Слой биполярных клеток – содержит нейроны проведения и конвергенции возбуждения;

· Слой амакриновых клеток – содержит тормозные нейроны;

· Слой ганглиозных клеток – в нем возникают потенциалы действия. Из отростков этих клеток формируется зрительный нерв;

Все слои пронизывают и связывают между собой глиальные (Мюллеровы) клетки.

Пигментный слой – состоит из пигментных клеток, содержащих пигмент фусцин. Он поглощает свет, препятствуя его рассеивание и способствуя четкости изображения, так же участвует в трофике рецепторов (депо витамина А), их антиоксидантной защите, фагоцитирует продукты распада фоторецепторов. Механически этот слой наиболее слабое место (отслойка сетчатки).

У ночных животных между пигментными клетками и фоторецепторами расположен слой, отражающий свет и состоящий из кристаллов и нитей. В результате на фоторецепторы действуют не только прямые лучи, но и отраженные, что дает возможность видеть в темноте.

От внутренней поверхности пигментного слоя в глубину примыкающего слоя фоторецепторов отходят отростки (борода), окружающие светочувствительные клетки. При сильном освещении зерна пигмента перемещаются из эпителиальных клеток и заслоняют палочки и колбочки от яркого света.

Слой фоторецепторов – осуществляет рецепцию светового раздражения. Представлен палочками (расположены в сетчатке, кроме желтого и слепого пятен) и колбочками (локализуются в наибольшей концентрации в области желтого пятна). Фоторецепторы состоят из двух члеников: наружного (содержит зрительный пигмент, чувствительный к действию света) и внутреннего (имеет ядро и митохондрии, обеспечивающие энергетические процессы в клетке), отделенных друг от друга мембраной. Светочувствительные членики фоторецепторов обращены в сторону, противоположную свету. Светочувствительный членик каждой палочки состоит из стопки тонких пластинок и дисков, собранных в виде цилиндра и включающий в свой состав фоторецепторный белок – фотопигмент. В колбочках мембрана образует дискообразные выпячивания, накладывающиеся друг на друга и уменьшающиеся в диаметре по направлению к верхнему концу. Внутренний сегмент фоторецепторной клетки оканчивается отростком, по которому возбуждение передается с фоторецептора на контактирующую с ним биполярную клетку.

Функции палочек:

· имеют высокую чувствительность к свету (в 500 раз выше чем у колбочек) и приспособлены для ночного зрения;

· обеспечивают периферическое зрение;

· воспринимают подвижные объекты.

Функции колбочек:

· осуществляют центральное зрение и обеспечивают остроту зрения;

· осуществляют цветовосприятие.

Свет, проникающий через стекловидное тело и внутренние слои сетчатки, не оказывает на них действия и воздействует только тогда, когда доходит до палочек и колбочек. В результате возникает нервный импульс, передающийся через цепь клеток, которые миновал луч света, и по зрительному нерву направляется в головной мозг. Наибольшее возбуждение от действия света наблюдают в тех случаях, когда направление луча совпадает с длинной осью палочки или колбочки.

Возбуждение от фоторецепторов передается на волокна зрительного нерва через два слоя нервных клеток - биполярных и ганглиозных, контактирующих при помощи синапсов. Передача импульса с клеток одного слоя на другой совершается посредством выделения ацетилхолина, а механизм передачи возбуждения с фоторецептора на биполярную клетку выяснен пока недостаточно.

Некоторые биполярные нейроны связаны со многими палочками, а ганглиозные клетки контактируют со многими биполярными клетками. В результате группа фоторецепторов, соединенных с одной ганглиозной клеткой, образует рецептивное поле для этой клетки. Кроме того, в сетчатке имеются еще горизонтальные (звездчатые) и амикриновые клетки с ветвящимися отростками, соединяющими по горизонтали биполярные и ганглиозные клетки. Одна ганглиозная клетка может быть связана с десятками тысяч фоторецепторов, причем рецептивное поле этой клетки составляет площадь диаметром 1 мм.

Иначе происходит передача импульса в мозг с колбочек. Каждая колбочка передает сигнал биполярной клетке, связанной только с ней одной. Следовательно, если импульсы от рядом находящихся палочек сливаются, то сигналы от двух рядом расположенных колбочек передаются отдельно.

При рассматривании задней стенки глазного яблока, так называемого глазного дна (что можно сделать при помощи вогнутого зеркала - офтальмоскопа), виден бледноокрашенный участок, от которого расходятся кровеносные сосуды. Этот участок называют слепым пятном, так как в нем нет светочувствительных клеток. Со всей сетчатки к слепому пятну сходятся нервные волокна, образующие зрительный нерв. У сельскохозяйственных животных зрительные нервы перекрещиваются на вентральной поверхности головного мозга, причем нерв от правого глаза идет к левому полушарию, а от левого - к правому. Однако некоторое количество волокон не перекрещивается.

Биполярные нейроны сетчатки и ганглиозные клетки, образующие своими аксонами зрительный нерв, выполняют функции проводникового аппарата. Волокна зрительного нерва идут без перерыва к ядрам наружного (латерального) коленчатого тела, а также к ядрам передних бугров четверохолмия, где расположены центры ориентировочной реакции на зрительные раздражители. В наружные коленчатые тела передаются импульсы, точно соответствующие реакциям фоторецепторов сетчатки. Отсюда по аксонам последнего нейрона зрительного пути импульсы идут в затылочную область коры больших полушарий - корковый центр зрительного анализатора.

По направлению к наружному краю глаза от слепого пятна на оптической оси сетчатки находится центральное поле, имеющее вид светлой полоски - место наилучшего ви дения. В середине полоски расположено углубление, называемое цен тральной ямкой, в которой светочувствительные клетки состоят почти исключительно из колбочек, По мере удаления от нее количество палочек возрастает, колбочек же становится все меньше.

7. Фотохимические реакции и элек трические явления в сетчатке.

Рецепторы сетчатки содержат светочувствительные вещества: палочки - родопсин, колбочки - йодопсин. Родопсин и йодопсин - высокомолекулярные соединения белковой природы. Родопсин на свету теряет свою красную окраску и становится желтым, а затем обесцвечивается. Распадаясь на свету, он образует каротиноид ретинен и специфический белок - опсин. В темноте осуществляется ресинтез родопсина. Для его восстановления необходим ретинол (витамин А), который содержится в пигментном слое.

Световая энергия превращает родопсин, содержащий ретинен в форме свернутой молекулы - в цис-форме, в люмиродопсин - неустойчивое соединение, в которое ретинен входит в транс-форме с выпрямленной боковой цепью, то есть происходит изомеризация. Благодаря этому связь ретинена с белком нарушается и люмиродопсин превращается в метародопсин, а затем в свободный ретинен и в опсин. После этого транс-форма ретинена (альдегида витамина А) под действием фермента редуктазы переходит в витамин А (ретинол). Вновь идет процесс изомеризации - превращение в цис-форму, и только после этого формируется цис-ретинен, который в темноте с белком опсином вновь образует родопсин, который участвует в циклическом процессе.

Структура йодопсина близка к родопсину. Но в йодопсине ретинен соединен с другим белком, который отличается от опсина палочек. Степень поглощения света родопсином и йодопсином различна. Родопсин максимально поглощает лучи в сине-зеленой части спектра. Эти лучи в темноте кажутся наиболее яркими. Йодопсин в наибольшей степени поглощает желтый свет. Если с яркого солнечного света войти в темное помещение, то сначала ничего не видно, но по мере восстановления родопсина чувствительность палочек к свету возрастает и глаза начинают различать окружающую обстановку. Этот процесс приспособления называют тем новой адаптацией. При недостатке ретинола восстановление родопсина задерживается, глаз теряет способность к темновой адаптации (куриная слепота).

Фотохимические реакции зрительных пигментов при действии света составляют начало возбуждения зрительных рецепторов. Процесс возбуждения рецепторов сетчатки и возникновение импульсов в зрительном нерве зависят от ионов, которые образуются при распаде зрительных пигментов. В зрительных рецепторах и в зрительном нерве возникают электрические потенциалы, которые можно зафиксировать в виде электроретинограммы.

8. Световая чувствительность и ост рота зрения

Фоторецепторы сетчатки могут реагировать на очень малую величину света с чрезвычайно экономным расходованием зрительных пигментов. Палочки более чувствительны (в 1000 раз), чем колбочки. При малой интенсивности освещения восприятие света происходит при помощи палочек. Они расположены в основном по периферии сетчатки, и поэтому в сумерки лучше видны предметы, расположенные по сторонам. При ярком освещении восстановление родопсина не поспевает за его распадом в палочках и восприятие света осуществляется колбочками.

Способность к ясному различию мелких предметов и их деталей свойственна больше колбочкам, чем палочкам. Максимальную способность различать отдельные предметы называют остротой зрения. Ее определяют по наименьшему расстоянию между двумя точками, которые глаз видит отдельно, а не слитно. Максимальной остротой зрения обладает желтое пятно, к периферии от него острота зрения значительно ниже.

9. Функциональные особенности клеток сетчатки

Зрительные образы .

Сетчатка вовлечена в формирование трёх зрительных образов. Первый образ формируется под действием света на уровне фоторецепторов, превращается во второй образ на уровне биполярных клеток, в ганглиозных нейронах формируется третий образ . В формировании второго образа принимают также участие горизонтальные клетки, а в образовании третьего задействованы амакринные клетки.

Латеральное торможение - способ усиления зрительного контраста. Латеральное торможение - важнейший элемент деятельности сенсорных систем, позволяющий в сетчатке усиливать явления контраста. В сетчатке латеральное торможение отмечается во всех нейронных слоях, но для горизонтальных клеток оно является их основной функцией. Горизонтальные клетки латерально синаптически связаны с синаптическими участками палочек и колбочек и с дендритами биполярных клеток. В окончаниях горизонтальных клеток выделяется медиатор, который всегда оказывает тормозное влияние. Таким образом, латеральные контакты горизонтальных клеток обеспечивают возникновение латерального торможения и передачу правильного зрительного паттерна в мозг.

Биполярные клетки реагируют на контрастность изображения. Некоторые биполяры сильнее реагируют на цветной, нежели на чёрно-белый контраст.

Ганглиозные клетки реагируют на множество свойств зрительного объекта (например, на контрастность изображения, на светлые и тёмные объекты, однородность освещения, цвет объекта, его ориентацию).

10. Цветовое зрение

Характеристики цвета . Цвет имеет три основных показателя: тон (оттенок), интенсивность и насыщение . Для каждого из цветов существует дополнительный (комплементарный) цвет, который, будучи должным образом перемешан с исходным цветом, дает ощущение белого цвета. Чёрный цвет является ощущением, создаваемым отсутствием света. Восприятие белого цвета, любого цвета спектра и даже дополнительных цветов спектра может быть достигнуто смешением в различных пропорциях красного (570 нм), зелёного (535 н़ 㰄 㠄   ㌄   㬄 㸄 ㄄ 䌄 го (445 нм) цветов. Поэтому красный, зелёный и голубой - первичные (основные) цвета . Восприятие цвета зависит в какой-то мере от цвета других объектов в поле зрения. Например, красный объект кажется красным, если поле освещается зелёным или голубым цветом, и этот же красный объект будет казаться бледно-розовым или белым, если поле будет освещаться красным цветом.

Цветовосприятие - функция колбочек. Существует три типа колбочек, каждый из которых содержит только один из трёх разных (красный, зелёный и синий) зрительных пигментов.

У животных, ведущих ночной образ жизни, в сетчатке преобладают палочки (летучая мышь, сова, крот, кошка, еж), а у дневных животных - колбочки (голуби, куры, ящерицы). На основании этих наблюдений был сделан вывод, что колбочки связаны с дневным зрением, а палочки в основном приспособлены для сумеречного зрения и не воспринимают цвета. Однако кошки прекрасно видят днем, а содержащиеся в неволе ежи легко приспосабливаются к дневному образу жизни; змеи, в сетчатке которых находятся главным образом колбочки, хорошо ориентируются в сумерках. Функции палочек и колбочек у разных животных мало изучены. Лошади и рогатый скот хорошо различают цвета, в отношении собак имеются противоречивые данные.

Цветовое зрение у животных изучено крайне недостаточно. Можно предположить, что животные обладают высокоразвитым цветовым зрением, иначе невозможно объяснить широко распространенное в природе явление мимикрии, или покровительственной окраски, - один из видов приспособления животных к окружающей среде. Она жизненно необходима для них. Хищнику трудно поймать добычу, если он резко выделяется на фоне окружающей местности; многие животные спасаются от опасности, затаиваясь в полной неподвижности, так как именно движение делает их заметными на фоне, с которым сливается цвет их шкуры (горные козлы и бараны, пятнистые олени, выводковые птицы и т.д.).

Передача цветовых сигналов

Каждая ганглиозная клетка может стимулироваться как отдельными, так и многими колбочками. Когда все три типа колбочек - красные, голубые и зеленые - стимулируют одну и ту же ганглиозную клетку, сигналы, передаваемые через ганглиозную клетку, будут одинаковыми для любого цвета спектра. Эти сигналы не играют роли в определении различных цветов. Все они будут сигналами белого цвета.

Если ганглиозная клетка возбуждается колбочками только одного цвета, то она будет тормозиться возбуждением колбочки другого типа. Это наблюдается для красных и зелёных колбочек. Красные вызывают возбуждение, а зеленые - торможение ганглиозных клеток и наоборот: когда зеленые - возбуждают, то красные - тормозят. Такой же реципрокный тип отношений наблюдается между колбочками голубого, с одной стороны, и комбинацией красных и зелёных колбочек, с другой стороны, вызывая реципрокные (возбуждение–торможение) отношения между голубым и жёлтым цветом.

Механизм антагонистических эффектов следующий: колбочка одного цвета возбуждает ганглиозную клетку через деполяризованную биполярную клетку, а колбочка другого цвета тормозит ту же ганглиозную клетку через гиперполяризованную биполярную клетку.



Расположенные в наружном слое сетчатки . Палочки и колбочки сходны по своему строению, они состоят из четырех участков:

1. Наружный сегмент - светочувствительный участок, где световая энергия преобразуется в рецепторный потенциал . Наружный сегмент заполнен мембранными дисками, образованными плазматической мембраной. В палочках в каждом наружном сегменте содержится 600 - 1000 дисков, которые представляют собой уплощенные мембранные мешочки, уложенные как столбик монет. В колбочках мембранных дисков меньше, они представляют собой складки плазматической мембраны.

2. Перетяжка - место, где наружный сегмент почти полностью отделен от внутреннего впячиванием наружной мембраны. Связь между двумя сегментами осуществляется через цитоплазму и пару ресничек, переходящих из одного сегмента в другой.

3. Внутренний сегмент - область активного метаболизма, заполненная митохондриями, доставляющими энергию для процессов зрения, и полирибосомами, на которых синтезируются белки, участвующие в образовании мембранных дисков и зрительного пигмента. Здесь же расположено ядро.

4. Синаптическая область - место, где клетка образует синапсы с биполярными клетками. Диффузные биполярные клетки могут образовывать синапсы с несколькими палочками. Это явление, называемое синаптической конвергенцией, уменьшает остроту зрения, но повышает светочувствительность глаза. Моносинаптические биполярные клетки связывают одну колбочку с одной ганглиозной клеткой, что обеспечивает лучшую по сравнению с палочками остроту зрения. Горизонтальные клетки и амакриновые клетки связывают вместе некоторое число палочек или колбочек. Благодаря этим клеткам зрительная информация еще до выхода из сетчатки подвергается определенной переработке. Эти клетки участвуют также в латеральном торможении.

Палочек в сетчатке содержится больше, чем колбочек - 120 млн и 6 - 7 млн соответственно. Тонкие, вытянутые палочки размером 50х3 мкм равномерно распределены по всей сетчатке, кроме центральной ямки, где преобладают удлиненые конические колбочки размером 60х1,5 мкм. Так как в центральной ямке колбочки очень плотно упакованы (150 тыс. на кв.мм), этот участок отличается высокой остротой зрения. Палочки обладают большей чувствительностью к свету и реагируют на более слабое освещение. Палочки содержат только один зрительный пигмент, не могут различать цвета и используются преимущественно в ночном зрении . Колбочки содержат три зрительных пигмента, что позволяет распознавать цвета, они используются преимущественно при дневном свете. Палочковое зрение отличается меньшей остротой, так как палочки расположены менее плотно и сигналы от них подвергаются конвергенции, но именно это обеспечивает высокую чувствительность, необходимую для ночного зрения.

Оптическая система глаза. Аномалии рефракции

Оптический аппарат глаза состоит из прозрачной роговицы, передней и задней камер, заполненных водянистой влагой, радужной оболочки, окружающей зрачок, хрусталика с прозрачной сумкой и стекловидного тела. В целом - это система линз, формирующая на сетчатке перевернутое и уменьшенное изображение рассматриваемых предметов. Внутренняя оболочка глазного яблока - сетчатка (retina)состоит из двух листков - внутреннего светочувствительного (нервная часть) и наружного пигментного. Пигментный слой поглощает световые лучи, предотвращая их отражение. К пигментному эпителию прилежит слой палочек и колбочек, которые представляют собой периферические отростки фоторецепторов. Рефракция или преломление (от латинского - refractio - преломление) глаза - преломляющая сила оптической системы глаза при покое аккомодации.У каждой линзы существует фокусное расстояние, т.е. расстояние, на котором формируется четкое изображение, при преломление в ней световых лучей от бесконечно удаленных предметов. Это постоянная величина, зависимая от радиуса кривизны данной линзы В обычном глазу фокусное расстояние роговицы равно примерно 23,5 мм - на этом расстоянии от неё располагается сетчатка. Такой глаз видит чёткое изображение предмета. Рефракция зависит от двух факторов: силы оптической системы глаза и размеров (длины) глазного яблока. Близорукость – это патология зрения, при которой проецируемое изображение попадает не на сетчатку, а перед ней (слишком короткое фокусное расстояние). Это связано с дефектом оптической системы глаза – её сила слишком велика. При близорукости человек плохо видит вдали и хорошо вблизи Дальнозоркость – это патология зрения, при которой проецируемое изображение попадает не на сетчатку, а дальше неё (слишком большое фокусное расстояние). Это связано с дефектом оптической системы глаза – её сила слишком мала. При дальнозоркости человек плохо видит вблизи. При близорукости и дальнозоркости изображение точки на сетчатке будет выглядеть как расплывчатый круг. Кроме этого, встречается вид рефракции, при котором точечный объект проектируется на сетчатку в виде полоски или эллипса. Это обусловлено тем, что разные участки роговицы или хрусталика имеют разную преломляющую способность, иногда даже на протяжении одного меридиана. Такая патология называется астигматизмом.

Сетчатка (лат. retína ) - внутренняя оболочка глаза, являющаяся периферическим отделом зрительного анализатора; содержит фоторецепторные клетки, обеспечивающие восприятие и преобразование электромагнитного излучения видимой части спектра в нервные импульсы, а также обеспечивает их первичную обработку. Фоторецепторы: палочки и колбочки
Палочки являются рецепторами, воспринимающими световые лучи в условиях слабой освещенности. Они возбуждаются при действии на них 1 кванта света. Размеры палочек: длина - 0,06 мм, диаметр 0,002 мм.
В строении палочки различают:
наружный сегмент (содержит мембранные диски с родопсином), связующий отдел (ресничка), внутренний сегмент (содержит митохондрии), область с нервными окончаниями. Наружный сегмент: состоит из стопки уплощенных мембранных пузырьков, на мембранах которых находится пигмент родопсина (зрительный пурпур). В строении колбочки принято различать:
наружный сегмент (содержит мембранные полудиски), связующий отдел (перетяжка),
внутренний сегмент (содержит митохондрии), синаптическую область.
Наружный сегмент заполнен мембранными полудисками, образованными плазматической мембраной и отделившимися от нее. В районе связующего отдела (перетяжки) наружный сегмент почти полностью отделен от внутреннего впячиванием наружной мембраны. Связь между двумя сегментами осуществляется через цитоплазму и пару ресничек, переходящих из одного сегмента в другой.

Фоторецептор сочетает в своей структурно-функциональной организации два различных комплекса. Наружная часть фоторецепторной клетки, обращенная к пигментному эпителию, включает липопротеиновые структуры, содержащие зрительный пигмент - родопсин, поглощающий кванты света. Увеличение площади рецепторной мембраны в дисках наружного сегмента, где содержатся рецептивные белки, способствует увеличению чувствительности к свету. Противоположный полюс клетки оканчивается сложным синаптическим устройством, соответствующим сходным синапсам в нейронах, и передает информацию о восприятии зрительных сигналов следующим в цепи нервным клеткам. О структуре и функции фоторецепторов, специально в данной работе не изучавшихся, см. след. обзоры: Kolmer , Polyak , Walls , Pedler , Островский , Cohen, . Бабурина , Бабурина и Белтадзе , Stell , Винников , Rodieck , Лычаков , Подугольникова и Максимов , Говардовский , Бызов , Зак , Бочкин и Островский .

В рецептирующей клетке происходит преобразование световых, стимулов в рецепторный потенциал.

Под влиянием последнего изменяется выделение медиатора, который действует на нервное окончание сенсорного нейрона второго порядка и вызывает появление в нем постсинаптического потенциала.

Фоторецепторы изучаются более ста лет. Однако серьезные успехи в понимании структуры и функции палочек и колбочек связаны с несколькими последними десятилетиями, с появлением электронной микроскопии. Лишь на ультраструктурном уровне выяснилось, что мембранные диски палочек расположены стопками, отделенными от наружной плазматической мембраны, в колбочках же наружная плазматическая мембрана образует складки, соединяясь с каждым диском с одной стороны (рис. 2, а).

Стопки дисков постоянно обновляются, верхние стоики периодически перемещаются кнаружи, где фагоцитируются пигментным эпителием . Процесс отторжения дисков связан с суточным ритмом освещенности и у колбочек сетчатки некоторых рыб, рептилий, птиц происходит сразу после наступления темноты. У палочек многих позвоночных мембраны отторгаются в начале светового периода [Бабурина, Белтадзе, 1983].

Соединительная ножка , содержащая 9 пар фибрилл, связывает наружный и внутренний сегменты фоторецептора. В наружной части внутреннего сегмента тесно расположенное скопление митохондрий образует эллипсоид (рис. 2, а). Масляная капля, наблюдающаяся в колбочках некоторых позвоночных, видна среди митохондрий. Другими органоидами внутреннего сегмента являются параболоид (гранулы гликогена) и миоид.

Синаптические окончания палочек и колбочек образуют специализированные соединения с терминалями дендритов биполярных клеток, терминалями дендритов и аксонов горизонтальных клеток (рис. 2, б; 3).

Эти синапсы различаются по расположению и конструкции и могут быть инвагинирующими, полуинвагинирующими и поверхностными. Инвагинирующие синапсы формируются диадами и триадами, в которых центральный отросток обычно дендрит биполяра находится непосредственно под синаптической лентой, окруженной синаптическими пузырьками, а по бокам расположены терминали дендритов горизонтальных клеток (см. рис. 2, б; 3). В синаптическом окончании палочки наблюдаются лишь немногочисленные терминали дендритов нейронов второго порядка. Синаптические окончания колбочек, как правило, значительно сложнее, крупнее и включают множество триад, группирующихся вокруг синаптических лент. Детали синаптических соединений биполяров и горизонтальных клеток с терминалями фоторецепторов существенно отличаются у различных позвоночных.

Фоторецепторы связаны между собой, электронно-микроскопическими исследованиями между ними выявлены щелевые контакты. Они обнаружены между красными палочками у жабы , в сетчатке аксолотля и млекопитающих . Морфология щелевых контактов между фоторецепторами существенно отличается у различных видов позвоночных [Давыдова, 1983] по уровню расположения контактов, по видам рецепторов, между которыми имеются связи, по их протяженности и т. п. Установлено, что связанные между собой контактами фоторецепторы одинакового типа, например колбочки с одинаковой спектральной чувствительностью или палочки, обнаруживают и электрическую связь [Бызов, 1984]. Хотя, как правило, контакты наблюдаются между рецепторами одинакового типа, обнаружены связи и между рецепторами различных типов. Например, в сетчатке лягушки (Rana pipiens) на сериальных срезах у красной палочки найдено три контакта - с другой красной палочкой, с одиночной колбочкой и с основным членом двойной колбочки. Одиночная колбочка контактирует с тремя красными палочками . Щелевые контакты обнаружены между рецепторами разных типов и в сетчатке млекопитающего- кошки; например, тонкий длинный отросток колбочковой синаптической ножки образует связь со сферулой палочки . Авторы этой находки считают, что взаимодействие палочковой к колбочковой систем в некоторых преимущественно палочковых сетчатках у млекопитающих происходит уже на начальном уровне обработки зрительных сигналов.


Световая микроскопия позволяет наблюдать даже на уровне фоторецепторов более сложное строение у низших позвоночных по сравнению с млекопитающими. У многих видов позвоночных наблюдаются не только одиночные колбочки, но и двойные (рис. 1, А, Б), отсутствующие у млекопитающих (рис. 1, В). У птиц и черепах, как упомянуто выше, обнаружено не менее шести различных типов колбочек. По мнению Л. В. Зуевой , система цветового зрения рептилий и птиц состоит из четырех или даже больше приемников и, возможно, превосходит по способностям трехкомпонентную систему цветового зрения человека.

В настоящее время принято разделение фоторецепторов на 2 группы: цилиарные (производные клеток со жгутиком) и рабдомерные (производные клеток без жгутика). В обоих случаях зрительный пигмент оказывается включенным в фоторецепторную мембрану, причем во всех видах рецептор-ных клеток они обладают сходной химической природой и называются ро­допсинами.

Фоторецепторы располагаются во внутреннем слое сетчатки - свето­чувствительном слое. У человека зрительные рецепторы - цилиарные, пред­ставленные двумя типами - палочками и колбочками.

Колбочек насчитывается около 6 млн., располагаются они в централь­ной части сетчатки и отвечают за цветное зрение. Палочек значительно больше - около 120 млн., располагаются они на периферии сетчатки и отве­чают за черно-белое зрение.

Колбочки обеспечивают зрение при дневном свете (фотоническое), па­лочки - в условиях ясной ночи (скотопическое). В сумерках оба вида фото­рецепторов заняты одинаково, обеспечивая мезопическое зрение. При фото-пическом зрении наблюдается максимальная острота и временное разреше­ние быстро меняющихся фигур. При скотопическом зрении имеет место функциональная цветовая слепота, («все кошки серы»).

При переходе из освещенной комнаты в темную зрение падает прак­тически до нуля, но постепенно оно восстанавливается, приспосабливаясь к низкой интенсивности света в окружающей среде (темповая адаптация). По мере развития темновой адаптации острота зрения повышается.

Процесс, противоположный темповой адаптации, развивающийся при переходе из темной комнаты на яркий свет называется световой адапта­цией.

Тем новая адаптация длится около 30 мин, в то время как световая за­нимает всего 15-60 с.

Все виды фоторецепторов передают информацию о восприятии кванта света в ЦПС не с помощью нервного импульса, а электротоническим путем.

Кванты света поглощаются в рецепторах специализированными моле­кулами из класса каротиноидов - хромолипопротеинами.

Спектр поглощающая часть молекулы - хромофор - представлена аль­дегидами витамина А, или ретиналями. При связывании ретиналя с опсином образуется родопсин с максимумом поглощения 500 нм (отсюда его другое название - зрительный пурпур).

При поглощении фотона совершается реакция выцвечивания или обес­цвечивания родопсина (потеря цвета молекулой). При этом выделяется энергия, формирующая электрический ток в рецепторных клетках, которые таким образом передают информацию о кванте света в ЦНС.

Помимо фоторецепторов в сетчатке выделяют пигментные и глиальные, а также клетки четыре класса нервных клеток - биполярные, горизон­тальные, ганглиозные и амакриновые.

Пигментные клетки обеспечивают фоторецепторы - палочки и колбоч­ки - родопсином, глиальные клетки выполняют опорную функцию.

Биполярные клетки передают информацию от фоторецепторов к гори­зонтальным и амакриновым клеткам. В свою очередь амакриновые клетки синаптически связаны с горизонтальными и ганглиозными клетками, кото­рым и передается нервный импульс. Отростки ганглиозных клеток форми­руют зрительный нерв.

Передача нервного импульса от фоторецепторов к биполярным и ганг-лиозным клеткам представляет собой главный путь поступления информации в ЦНС, а от фоторецепторов к горизонтальным и амакриновым клеткам - ла­теральный, обеспечивающий латеральное торможение.

Ганглиозные клетки, объединяясь, формируют рецептивные поля, кото­рые могут частично или полностью перекрываться. Информация от них по­ступает по волокнам типа С.



Похожие публикации